
dirlock: a tool to manage
encrypted filesystems

Alberto Garcia

Open Source Summit Europe 2025

Amsterdam

1

About me
Software engineer at Igalia.

GNOME
Maemo / MeeGo
QEMU

Debian developer.
Currently working on SteamOS.

2

dirlock
A tool to manage disk encryption

Not a new encryption system

Built on top of existing technologies

3

Use case: encryption for SteamOS
Steam Deck and others: portable devices, easy to lose.
No encryption at the moment.
Not only usable for gaming.
Anyone can read the contents of the hard drive.

4

Disk layout

5

Current alternative: Plasma Vaults

6

Our goals

7

Personal files must be unreadable if the computer is stolen.
$HOME should be be encrypted.

Possibility to encrypt other directories.
Multiple users with independent encryption keys.
Access should be authenticated.

PIN, password, or similar to log in.
Not all computers have a keyboard!
Support hardware-backed mechanisms.

8

Enable encryption without reinstalling the OS from scratch.
Ideally: a simple "Encrypt data" button or command.

D-Bus API.
Reasonable performace.

9

Available encryption technologies
Stacked filesystem encryption
Block device encryption
Native filesytem encryption

10

Stacked filesytem encryption
Data is stored as (encrypted) regular files.
Mount the encrypted directory to see the data.
Examples: gocryptfs, EncFS

Implemented in user space (FUSE).
Used by tools like Plasma Vaults.

11

Block device encryption
Encrypts blocks on disk, does not care about what's inside. (normally a
filesystem but it can be anything).
Uses raw partitions or loopback files.
The contents are completely hidden.
Most popular technology: LUKS.

The header contains the encryption keys.

12

Native filesystem encryption
Files are encrypted directly at the filesystem level.
A filesystem can contain a mix of encrypted and unencrypted directories.
Only partial confidentiality:

Data is safe, but metadata, file sizes, ... are not protected.
The Linux kernel provides the fscrypt API:

Implemented by ext4, f2fs and others.
User space is responsible for the encryption keys.

13

LUKS vs fscrypt

14

LUKS: pros and cons
Pros:

Maximum confidentiality and protection.
Supports TPM, FIDO tokens (via systemd).

Cons:
Usually unlocked early on boot.
No fine-grained control about what to encrypt.
Hard to encrypt an existing installation, it needs a new filesystem.

15

fscrypt: pros and cons
Pros:

Easy to encrypt an existing installation, no preallocation needed.
Multiple directories and user accounts with different keys.
Easy integration with PAM.
Can be unlocked after booting, also remotely (ssh).

Cons:
Metadata not encrypted, some information can be seen or guessed.

Approximate directory structure, sizes, permissions, timestamps, extended
attributes.

Attackers can delete files.
16

Our choice is fscrypt
Good confidentiality guarantees for the main use case.
Flexible.
It can be enabled in existing installations.
Good performance.

17

But fscrypt is just a kernel API
We need to handle the encryption keys in user space.
Existing tools:

The fscrypt command-line application.
Related to, but different from the fscrypt kernel API.

systemd-homed

18

/usr/bin/fscrypt
Reference tool to manage encrypted directories.
Written in Go by Joe Richey and Eric Biggers.
Simple to use, covers all essential functionalities.
PAM support.
Only allows passwords and raw binary keys.

No hardware-backed mechanisms.
No D-Bus API.

19

systemd-homed
A tool to manage human user accounts.
Various storage backends, two of them encrypted:

LUKS (homedir inside a LUKS loopback file).
fscrypt (only the deprecated v1 API).

D-Bus API, PAM and FIDO support (but no TPM).
However: it's primarily not an encryption tool.

It encrypts $HOME and nothing else.
Own user database (no /etc/passwd).

Uses idmapped mounts, issues with podman.

20

dirlock
A new high-level tool that uses the fscrypt API

21

Overview
Does encryption, authentication and nothing else.
Heavily inspired by /usr/bin/fscrypt.
Still under development.

PAM support working.
FIDO support working.
(basic) TPM support working.
D-Bus API in prototype stage.

22

Where to find it

Free software, BSD license.
Written in Rust.
Works in any Linux system.
Available in SteamOS 3.8 as an experimental feature.

https://gitlab.steamos.cloud/holo/dirlock/

23

https://gitlab.steamos.cloud/holo/dirlock/

Basic architecture

24

Encryption policies and master keys
An encrypted directory has an encryption policy (master key and various
parameters).
The master key is loaded into the kernel to unlock a directory and removed
from the kernel to lock it.
User space (e.g. dirlock) must manage the master key and keep it safe.

25

Protectors
The master key is not used directly.
Wrapped with intermediate keys called protectors.
Different types of protectors (password, FIDO2, ...).
Compromised protectors can be deleted without exposing the master key.
Design taken from /usr/bin/fscrypt. Similar idea used in LUKS or BitLocker.

26

LUKS Header

Keyslot 1

Keyslot 2

...

Keyslot N

Token 1 (PKCS#11)

Token 2 (FIDO2)

...

Token M (TPM2)

27

bitlocker ()image source

28

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc732774(v=ws.10)

dirlock

Master key Master key

Password
Protector

FIDO2
Protector

Password
Protector

29

dirlock

Master key Master key

Password
Protector

Password
Protector

Master key

30

Password protector

Password Encryption
key

Protector
key

Salt

KDF

31

FIDO2 protector

PIN

Credential

Encryption
key

Protector
key

Salt

FIDO2 token

32

TPM2 protector

PIN Protector
key

Auth
Policy

TPM 2

33

dirlock: basic commands
encrypt : enable encryption on a directory.

This creates a new master key and encryption policy.
lock : lock an encrypted directory.

unlock : unlock an encrypted directory.
protector create : create a new protector.

protector remove : remove an existing protector.

protector change-password : change a protector's password.

policy add-protector : add a protector to an encryption policy.
policy remove-protector : remove a protector from an encryption policy.

34

PAM integration
PAM module available: pam_dirlock.so .
No need to convert users:

Home directory encrypted? ⇒ handled by dirlock.
Otherwise ⇒ PAM_USER_UNKNOWN ⇒ next module.

35

PAM configuration

auth [success=3 user_unknown=ignore default=die] pam_dirlock.so
auth [success=2 default=ignore] pam_systemd_home.so
auth [success=1 default=ignore] pam_unix.so nullok try_first_pass
auth requisite pam_deny.so
auth required pam_permit.so

session optional pam_dirlock.so
session required pam_unix.so

password [success=3 user_unknown=ignore default=die] pam_dirlock.so
password [success=2 default=ignore] pam_systemd_home.so
password [success=1 default=ignore] pam_unix.so obscure yescrypt
password requisite pam_deny.so
password required pam_permit.so

36

Demo

37

Thanks!

38

39

