
Unlocking the Full Potential
of WPE to Build a Successful

Embedded Product
Mario Sánchez Prada

mario@igalia.com

1 / 40

About me
CS Engineer, partner of Igalia
Involvement in some Open Source communities

e.g. Chromium, WebKit, GNOME
Other work done in the past:

Linux-based OSs (i.e. Endless OS, Litl OS)
Maemo (Hildon Application Manager)
Samsung Smart TV platform

Currently coordinating Igalia's WebKit team

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-242 / 40

About Igalia
Specialized Open Source consultancy, founded in 2001
Fully remote, HQ in A Coruña (Spain). Flat structure
Top contributors to all the main Web Engines

WebKit, Chromium, Gecko and Servo

Active contributor to other areas and OSS projects
V8, SpiderMonkey, JSC, LLVM, Node.js, GStreamer, Mesa, Linux Kernel...

Members of several working groups:
W3C, WHATWG, WPT, TC39, OpenJS, Test262, Khronos...

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-243 / 40

Outline
1. Why do Web engines matter in embedded devices?

2. Common pitfalls using WPE for embedded devices

3. Benefits of a tighter relationship with upstream

4. Best practices for successful integration

5. Real-world case studies

6. Wrapping up

7. Q&A

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-244 / 40

Why do Web engines matter
in embedded devices?

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-245 / 40

What is a Web engine?
Software component that leverages the power of the Web Platform

Fetches HTML / CSS / JavaScript content from multiple sources
Interprets the web content to create an internal representation
Produces a result that users can interact with
It’s an extremely flexible platform. Examples:

Textual and non-textual content
Multimedia playback
Fully fledged applications

Most popular Web engines:

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-246 / 40

What is WebKit?
Open Source Web engine, released under permissive licenses
Main features:
🕸 Complete implementation of the Web Platform
🚀 Performance and stability
🔒 Privacy and security
🔌 Embeddable as a top priority (i.e. stable public API)

Cross-platform support:
Desktop & Mobile: Mac, iOS, Windows, Linux, Android (WIP)
Embedded devices: set-top-boxes, video game consoles, in-flight
entertainment, smart home appliances, GPS devices, digital signage...

https://webkit.org

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-247 / 40

https://webkit.org/

WebKit Ports
WebKit port: adaptation of WebKit to a specific platform
Official WebKit Ports (upstream ports):

Mac: Safari, Apple Mail, iTunes, App Store...
iOS: every browser on iOS devices (including Chrome)
Windows: Microsoft Playwright, Playstation SDK
Playstation: Playstation 4 & Playstation 5
Linux: WebKitGTK (GTK apps) and WPE (embedded devices)

Common parts: GLib, libsoup (networking), GStreamer (multimedia)...
Key differences: graphics stack, input handling. Different use cases

https://docs.webkit.org/Ports/Introduction.html

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-248 / 40

https://docs.webkit.org/Ports/Introduction.html

What is WPE?
WPE is a WebKit port optimized for embedded devices

Big focus on flexibility, performance and security
Backends-based architecture and minimal set of dependencies
Low memory and storage footprint
HW-accelerated graphics and multimedia
Actively maintained upstream (e.g. up-to-date security fixes)

WPE does not rely on any UI Toolkit and can also be useful for less
conventional use cases (e.g. server-side rendering, headless mode...)

https://docs.webkit.org/Ports/Introduction.html

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-249 / 40

https://docs.webkit.org/Ports/Introduction.html

WPE-based products
Some examples of use cases we are aware of:

Set-Top-Boxes
Smart home appliances
GPS navigation devices
Video/Audio conferencing
Digital Signage

HiFi sound systems
Audio streaming
Headless server-side rendering
QA and testing
...

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2410 / 40

Why do Web engines matter
in embedded devices?

Strategic role in the software stack of embedded devices
Rendering, networking, security sandbox, media, I/O, accessibility...

The Web platform allows building all sorts of applications
Flexibility for designing, implementing and testing your product

Known development stack
Massive pool of web developers that could implement applications

Useful to implement all kind of products
Smart home, In-Vehicle/Flight Entertainment, digital signage...

However, using a Web engine effectively is more than just fixing bugs...

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2411 / 40

Common pitfalls using
WPE for embedded devices

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2412 / 40

Common pitfalls using
WPE for embedded devices

Treating WPE as a "black box" Web engine
Infrequent rebases and heavy patching downstream
Delayed feedback cycles with upstream
Not aligning product goals with upstream

All these situations create technical debt, make integration harder,
affect development efficiency and increase maintenance cost

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2413 / 40

WPE as a “Black Box” Web Engine
Problem: Treat WPE blindly as a plug-and-play black box
Risks:

Missed opportunity for optimizations
Duplicated effort solving issues already handled upstream

Possible solutions:
Allocate time for developers to explore the WPE stack
Allocate time for developers to contribute back upstream

Why this matters: Properly understanding the Web engine turns WPE
into a strategic advantage rather than into a hidden liability

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2414 / 40

Infrequent Rebases and
Heavy Patching Downstream

Problem: Downstream patches accumulate, delta becomes too big
Risks:

Integration becomes problematic and time-consuming
Development work often too focused on bug-fixing
Reduced capacity to work on strategic features

Possible solutions:
Rebase against upstream as often as possible
Contribute well-scoped patches promptly
Ensure good downstream practices (e.g. drop patches already upstream)

Why this matters: Frequent syncing avoids complex rebases,
improves the integration process and prevents security problems

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2415 / 40

Delayed Feedback with Upstream
Problem: Feedback reported to upstream is delayed for too long
Risks:

Reduced ability to get proper support from the community
Often leads to duplicated work (e.g. issues already fixed upstream)

Possible solutions:
Engage in discussions with the community in public channels
Report reproducible bugs immediately (i.e. including reduced test cases)

Why this matters: Timely feedback improves your relationship with
upstream and reduces the chance of duplicated efforts

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2416 / 40

Misaligned Product Goals
vs. Upstream Roadmap

Problem: Different goals complicate integration and WPE evolution
Risks:

Building bespoke features creates forks that are costly to maintain
Forks often require patching in non-upstreamable ways

Possible solutions:
Join roadmap discussions upstream to discuss your use-cases
Contribute back upstream whenever possible
Fund or work on needed features if necessary

Why this matters: Alignment maximizes efficiency from integrators
and keeps products on a realistic and maintainable upgrade path

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2417 / 40

Benefits of a tighter
relationship with upstream

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2418 / 40

Stability & Security
🚀 Immediate access to upstream bug fixes
🔒 Faster mitigation of security vulnerabilities (CVEs)
🔄 Early testing before public disclosures
🔧 Lower risk of emergency patching

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2419 / 40

Performance
🔄 Upstream optimizations and performance improvements
📈 Changes verified upstream reduce integration risks
🎯 Opportunity to prioritize optimizations relevant to your hardware
🗺 Clear visibility into future improvements via upstream roadmaps

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2420 / 40

Maintainability
🔧 Smaller delta with upstream reduces patch maintenance
📦 Easier adoption of new WPE releases
📅 Predictable long-term maintenance planning
💰 Lower ongoing maintenance costs

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2421 / 40

Alignment
📣 Upstream becomes aware of what's relevant for your products
🤝 Prioritization upstream aligns better with your business goals
🌐 Shared investment in common features with other stakeholders
🔮 Build credibility and influence within the WPE community

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2422 / 40

Community Support
🌎 Access to upstream developers and domain experts
🧩 Faster identification and resolution of complex issues
💡 Shared knowledge base reduces isolated debugging efforts
🚀 Build internal expertise via collaboration with upstream

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2423 / 40

Best practices for
successful integration

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2424 / 40

Open Communication
Recommendations:

Transparency: Share progress, blockers, and roadmap updates
Share goals: Collaboratively define goals for your platform integration.
Discuss non-standard requirements early to find the best solutions for you
Engage with the community: e.g. code reviews, general feedback...

Benefits:
Prevents divergence with upstream that can complicate maintenance
Accelerates problem resolution in collaboration with the WPE maintainers
Builds long-term relationships with the upstream community

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2425 / 40

Frequent Rebasing
Recommendations:

Keep smaller deltas and rebase as often as possible: avoid complex
integrations and potential bugs caused by misalignment with upstream.

Faster access to features & fixes (e.g. security fixes)
Simpler debugging (e.g. easier bisecting)

Development vs. product branches:
Tip of Tree (ToT): Use as baseline for ongoing feature development
Stable: Base product releases on stable upstream tags

Benefits:
Minimizes maintenance effort (i.e. lower technical debt)
Simplifies integration of new releases
Enables faster innovation

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2426 / 40

Contribute back upstream
Recommendations:

Use issue trackers: Document bugs, enhancements, and discussions
Contribute merge requests: Enable reviews and feedback from the start
Document decisions: Provide context for design and architecture choices

Benefits:
Higher quality of patches through open reviews
Faster identification of possible alternative solutions
Shared ownership of the codebase

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2427 / 40

Upstream-Friendly
Commit Practices

Recommendations:
Small, atomic changes: Easier and faster to review, test, and backport
Upstream-first mindset: i.e. avoid hacks, always consider upstreaming
Clear commit messages: Explain what a patch does and why it's needed

Benefits:
Simplifies the review process and increases acceptance rates
Improves troubleshooting, bugfixing and debugging
Builds trust and collaboration with WPE maintainers

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2428 / 40

Test Automation and CI
Recommendations:

Regression detection: Automated regression and performance testing
Pre-integration testing: Validate patches before merging
Upstream tracking: Automatic testing of upstream snapshots with your
downstream patches to detect early possible integration conflicts

Benefits:
Prevents breakage caused by upstream changes
Enables developing with confidence and fewer regressions
Ensures good stability and quality of the end product

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2429 / 40

Real-world case studies

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2430 / 40

Real-world case studies
🚨 Case Study #1: company that maintained a big fork of WPE
👍 Case Study #2: company that stayed close to upstream
🚀 Case Study #3: companies working exclusively upstream

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2431 / 40

🚨 Case Study #1: company that
maintained a big fork of WPE

Context:
Lots of downstream-specific changes on top of upstream WPE
Uses WPE upstream stable releases as base to add their changes on top
Rarely contributes patches upstream, often not following best practices
Integrates newer versions once every 1-2 years (i.e. skips some of them)

Challenges faced:
Painful integration process when moving to newer versions
Difficult to innovate and keep up with security patches
Difficult to obtain good support from the community
Complex alignment of priorities with upstream

Too much effort devoted to maintaining the fork and fixing bugs,
insufficient allocation of resources to feature development

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2432 / 40

👍 Case Study #2: company
that stayed close to upstream

Context:
Downstream changes only for patches not yet upstreamed, or too specific
Development on the main branch, stable branches for stabilization only
Contributing patches upstream is part of their development process
Rebases early and often (e.g. every 2-3 weeks) enabled by automated CI

Success story:
Delta with upstream kept to a minimum, integration becomes easier
No duplicated efforts, no unnecessary workarounds or hacks
Product stabilization aligns with upstream stabilization
Upstream-first mentality helps align business goals with upstream

Some downstream work still needed but limited to specific needs.
Better alignment with upstream and more time for feature work

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2433 / 40

🚀 Case Study #3: companies
working exclusively upstream

Context:
Some companies don't require downstream work (i.e. can work upstream)
Many types of projects possible: implementing a Web spec, performance
improvements, new APIs, support for more platforms or more use cases...
Great to implement complex features (e.g. CSS Grid, new SVG engine...)

Benefits of working directly upstream:
No downstream delta, simpler integration (e.g. product stabilization)
Contributing back upstream is a natural part of the process.
Upstream won't break your feature (i.e. full integration with upstream CI)
Improving technology benefits everyone while supporting specific needs

Ideal way of collaboration from a community standpoint, full
transparency and engagement upstream maximizes efficiency

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2434 / 40

Wrapping up

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2435 / 40

How to Use WPE Effectively
☑ Engage with upstream as much as possible

Align your shareable goals with the next upstream releases
Contribute back upstream, discuss shared goals in public forums

☑ Develop your products on top of the upstream development branch
and rely on stable branches for product stabilization only

Update stable releases in products but continue development in the ToT
Discard features that are not stable for your next releases

☑ Maintain and evolve automated CI tailored to your product
Automatically look out for regressions, have a policy to handle them
Automatically check upstream versions using your CI
Automate performance testing

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2436 / 40

In a nutshell...
Consider WPE an Open Source platform for the long term

and embrace upstream collaboration as much as possible 👌

PS: Do not treat WPE as "just another vendor package" 🙏

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2437 / 40

Thanks!

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2438 / 40

Q&A

Unlocking the Full Potential of WPE to Build a Successful Embedded Product

Mario Sánchez Prada, 2025-06-2439 / 40

40 / 40

