Evolving the Node.js
Module Loader

— Node.js DEY 2 —/LO—& — S
wEIE D

About me

e Joyee Cheung s&#kIE (FE - EMEE, ARA > -7 - Q—ZvEF)
e @joyeecheung on Github, @joyeecheung.bsky.social on BlueSky

e |galia & Bloomberg

e Node.js TSC member & V8 committer

e Been tinkering with various parts of Node.js

e Recently been working on the Node.js module loader

This talk

e How some recent changes in Node.js module loader(s?) came about,
from my perspective

e The challenges of evolving the module loader

My first involvement in Node.js module loading: compile cache

¥ main - + | Q

Q Gotofile t

» B .configurations

> M .devcontainer e Node.js coreis roughly written in half]S, half C++
> [githb e JShalfin lib/

» B android-patches _
> BB benchmark e C++halfinsrc/
> BB deps
> B doc
|> miib
> B src

> B test

Node.js built-in module loading: ake 1

e Unlike C++, JS isn't typically compiled ahead of time
e Originally, Node.js embedded the JS into the executable

lib/fs.js...

Node.js executable

Embedding at
build time

lib/fs.js...

Node.js built-in module loading: take 1

The JS code was parsed & compiled at run time, usually into bytecode first
(after V8 Ignition was rolled out)

lib/fs.js...

Node.js executable

Compilation at run time
V8 bytecode

Embedding at
build time

lib/fs.js...

Node.js built-in module loading: take 1

The bytecode was executed at run time to initialize builtins like fs, http, etc.

lib/fs.js...

Node.js executable

Compilation at run time
Execution at run time

Embedding at
build time

lib/fs.js...

Node.js built-in module loading: take 2

Proposed by Yang Guo (ex-V8 engineer who worked on V8 code cache)

JS/Wasm features Research

Code caching

Published 27 July 2015 - Tagged with internals

V8 uses just-in-time compilation (JIT) to execute JavaScript code. This means that immediately prior to
running a script, it has to be parsed and compiled — which can cause considerable overhead. As we
announced recently, code caching is a technique that lessens this overhead. When a script is compiled for
the first time, cache data is produced and stored. The next time V8 needs to compile the same script, even
in a different V8 instance, it can use the cache data to recreate the compilation result instead of compiling
from scratch. As a result the script is executed much sooner.

Node.js built-in module loading: take 2

At build time, Node.js pre-compile the JS, serialize the V8 code cache

(bytecode + metadata)

V8 code cache

Pre-compile at
build time

lib/fs.js...

Node.js built-in module loading: take 2

e The source code and the code cache can be compiled into the executable

e The source code is still needed for debugging and better stack traces

V8 code cache @l V8 code cache lib/fs.js...

Node.js executable

Pre-compile at Embedding at
build time build time

lib/fs.js...

Node.js built-in module loading: take 2

Deserialize the bytecode at run time, saving parsing and compilation time

V8 code cache

V8 code cache lib/fs.js...

A

Node.js executable

Deserialize at run time

Pre-compile at Embedding at V8 bytecode
build time build time

l Execution at run time

Node.js built-in modules

lib/fs.js...

Node.js built-in module loading: take 2

Added code cache integration for Node.js internal built-ins in 2018

confidence improvement accuracy (%) (¥k) (3kx)
misc/startup.js dur=1 *okok 66.19 % +1.84% +2.45% +3.20%

Without code cache With code cache

Time to finish JS tests 3:00 2:25
Binary Size 37863108 38914164
RSS after startup 20365312 19210240
heapTotal after startup 6062080 5537792
heapUsed after startup 3781136 3227328

Node.js user-land module loading: take 1

Great! Maybe it can be done for user-land modules too?

User JS modules

Execution

V8 bytecode

Compilation
(slow)

User JS source code

First run
s

Node.js user-land module loading: take 2

Great! Maybe it can be done for user-land modules too?

User JS modules

Execution

V8 bytecode

Serialization
/ Compilation
V8 code cache
on disk

(slow)

User JS source code

First run

Node.js user-land module loading: take 2

Great! Maybe it can be done for user-land modules too?

User JS modules

Execution

V8 bytecode

Deserialization
(fast) /
Map (fast)

V8 code cache
on disk User JS source code

First run Second run

Node.js user-land module loading: take 2?

e Discussed at one of the Node.js collaboration summits

e It's already implemented in the user-land by a package!

e No needto implementitin core?

v8-compile-cache
2.4.8 + Public + Published 2 years ago

[2] Readme & Code &) 0 Dependencies o% 845 Dependents W 13 Versions
v8-compile-cache instal
> npm i vB-compile-cache 18]

vB-compile-cache attachesa require hook to use V8's code cache to speed up Repository

instantiation time. The "code cache" is the work of parsing and compiling done by V8.
€ github.com/zertosh/v8-compile-cache

Fast forward to 2025..

The user-land solution
could affect ESM
adoption?

é

Jake Bailey @andhaveaniceday - Apr 7, 2023 (2 =

So to make this work, | have to create another file that requires v8-
compile-cache, then requires tsc.js (as it is a huge self-contained bundle
with no imports besides stdlib).

Comparing tsc.js and the cached wrapper, the startup time drops from
94.2ms to 57.7ms. Very cool!

Q1 ! 02 il 262 N &
Rob Palmer @robpalmer2 - Apr7, 2023 (A -

Code caching is a good win for any large JS script that you repeatedly load.
So CLls are an ideal use-case. Yarn has been using it for years.

MNow you're optimized this part, my prediction is that any minification
startup win will be much smaller than 17%.
D1 0 D1 ihi 301 L &

Jake Bailey & T
@andhaveaniceday

If only this approach worked for ESM code, given my hope to convert our
executables...

B:12 AM - Apr 7, 2023 - 266 Views

What the Node.js module loader looked like

node / lib / internal / modules / cjs / loader.js

Code Blame 1596 lines (1436 loc) -+ 50.2 KB

1318 Module.prototype._compile = function(content, filename) {

1319 let moduleURL;

1320 let redirects;

1321 const manifest = policy()?.manifest; X Code from pre ES6 era
1322 if (manifest) {

1323 moduleURL = pathToFileURL(filename);

1324 redirects = manifest.getDependencyMapper(moduleURL);
1325 manifest.assertIntegrity(moduleURL, content);

1326 }

1327

1328 const compiledWrapper = wrapSafe(filename, content, this);
1329

1330 let inspectorWrapper = null;

What the Node.js module loader looked like

node / lib / internal / modules / cjs / loader.js

Code Blame 1596 lines (1436 loc) - 50.2 KB

1318 Module.prototype._compile = function(content, filename) {

1319

1320 Naming it Module.prototype._compile should be enough to
1321 tell users this is not public APl and can break any time, right?
1322

1323 moduleURL = pathToFileURL(filename);

1324 redirects = manifest.getDependencyMapper(moduleURL);

1325 manifest.assertIntegrity(moduleURL, content);

1326 }

1327

1328 const compiledWrapper = wrapSafe(filename, content, this);

1329

1330 let inspectorWrapper = null;

Being called Module.prototype. compile doesn’t make it internal

node / lib / internal / modules / ¢js / loader.js

Code Blame 1596 lines (1436 loc) -+ 50.2 KB

1318 Module.prototype._compile = function(content, filename) {

1319 ‘)

1320 Hyrum's Law
i With a sufficient number of users of an API,
1322 . . .

sacs it does not matter what you promise in the contract:
1324 all observable behaviors of your system
1325 will be depended on by somebody.
1326

1327

1328 const compiledWrapper = wrapSafe(filename, content, this);

1329

1330 let inspectorWrapper = null;

And people monkey-patch it to customize compilation

v8-compile-cache / v8-compile-cache.js

Code Blame 373 lines (318 loc) : 10.6 KB

141 class NativeCompileCache {

151 install() {

154 this._previousModuleCompile = Module.prototype._compile;

155 v Module.prototype._compile = function(content, filename) {

156 ‘ o

157 What if Node.js refactored and removed this internal method?
158

i Or no longer invoked it internally? Or invoked at a different time?

160 Or added other logic that this is not taking care of?

161

162 // https://github.com/nodejs/node/blob/v10.15.3/1ib/internal/modules/cjs/helpers. js#L2¢
163 function resolve(request, options) {

164 return Module._resolveFilename(request, mod, false, options);

Vicious loop of monkey patching

By patching internals, it's not future-proof when new features are
integrated...

You need access to more internals to keep the patched internals work with
every internal!

Vicious loop of monkey patching

e Better implementitin core to support new features e.g. ESM...

e Also, Chrome (and most browsers) implements this internally, it makes

sense for Node.js to implement it internally too

JS/Wasm features Research

Code caching for JavaScript developers

Published 08 April 2019 - Updated 16 June 2020 - Tagged with internals

Code caching (also known as bytecode caching) is an important optimization in browsers. It reduces the
start-up time of commonly visited websites by caching the result of parsing + compilation. Most popular
browsers implement some form of code caching, and Chrome is no exception. Indeed, we've written and
talked about how Chrome and V8 cache compiled code in the past.

Restarting work on user-land compile cache

Support for file-system based persistent code cache in user-land module

loaders #47472

@ joyeecheung opened on Apr 8, 2023 - edited by joyeecheung Edits v Member

This stemmed from a Twitter thread. Specifically | am wondering if there are any concerns over having something similar to
what https://github.com/zertosh/v8-compile-cache does in core, the general idea is:

1. If the user enables this feature (probably should be off by default) e.g. via an environment variable, whenever we compile a
module, we produce the code cache for the module, and on process exit, we store any new cache produced in a cache
directory on the file system.

2. The next time the process is launched (with this feature enabled again), whenever we are loading a module, we attempt to
load the cache from that directory and use it when compiling the module, in order to speed up the start up (where most of
the time is usually spent on compilation).

This is also similar to what Chrome does with the V8 code cache.

Assignees

§:‘ joyeeche!

Type
No type

Restarting work on user-land compile cache

e Addressed security concerns (out of Node.js threat model - which
trusts everything from the file system)

e Got support from Bloomberg to work on it (h/t Rob)

e Refactored the spaghetti internals on the minefield to share caching

logic everywhere compilation happens

o Tried my best not to break anyone

Minefield, you say?

node / lib / internal / modules / cjs / loader.js

Code Blame 1596 lines (1436 loc) - 50.2 KB

1318 Module.prototype._compile = function(content, filename) {

1319 let moduleURL; .

1320 let redirects: Changlng arguments or return types of

1321 const manifest = policy()?.manifes Underscored methods breaks popular
v8-compile-cache |/ v8-compile-cache.js pa cka ges ‘

373 lines (318 loc) - 10.6 K What if | want to share compilation logic
with other (slightly different) code?

Code Blame

141 class NativeCompileCache {

151 install() {
154 this._previousModuleCompile = Module.prototype._compile; (J ODO)J | |
155 v Module.prototype._compile = function(content, filename) { oo

156 const mod = this;

Yay it worked! Oh wait..

Fixed a V8 bug for the API that only Node.js uses to support import()

% 5401780 ~ [compiler] reset script details in functions deserialized from code cache O

Cr

Change Info
Submitted

Owner
Uploader
Reviewers
cC

Show All v Reply

Apr 11,2024

49 Joyee Cheung
< V8 LUCICQ
@ Leszek Swirski@ o V8LUCICQ /Z/
< Mark Seaborn | (g Hannes Payer

& Andreas Haas = @ Mark Mentovai

@ Clemens Back..

almuthanna+.. #

and 10 more

Repo | Branch v8/v8 | main

Hashtags

compiler X #

Submit Requirements

V. T P . PR

[compiler] reset script details in functions deserialized from code
cache

During the serialization of the code cache, V8 would wipe out the
host-defined options, so after a script id deserialized from the
code cache, the host-defined options need to be reset on the script
using what's provided by the embedder when doing the deserializing
compilation, otherwise the HostImportModuleDynamically callbacks
can't get the data it needs to implement dynamic import().

Change-Id: I33cc6a5e43b6469d3527242e083f7ae6d8eddcba
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/5461780

Reviewed-by: Leszek Swirski <leszeks@chromium.org>
Commit-Queue: Joyee Cheung <joyee@igalia.com>
Cr-Commit-Position: refs/heads/main@{#93323}

Native compile cache is here!

e Landed initial implementation in 22.1.0
o NODE_COMPILE_CACHE=/path/to/cache/dir to enable
o Generate code cache in the specified directory in the first run, reuse code
cache in second run (if the code doesn't change)

o Supports both Common]JS and ESM % transparently
e Added S APlin 22.8.0 for CLI tools

o module.enableCompileCache()

Implementing it natively also allowed it to

Good news in the wild go faster than a user-land

implementation
‘ jakebailey commented on Aug 22, 2024 - edited ~ Member ***

This makes use of nodejs/node#54501 by converting our larger entrypoints { tsc , tsserver, typingsInstaller) into shims
which call require{"node:module").enableCompileCache(]) , then reguire the actual code. Qur entrypoints are assumed to
always be run in Node (or a compatible runtime), so this is safe.

This gives roughly a 2.5x% startup time boost.

Benchmark 1: node ./built/local/_tsc.js —wversion Ll;‘
Time (mean % a): 122.2 ms £ 1.5 ms [User: 181.7 ms, System: 13.9 ms]
Range (min .. max): 119.3 ms .. 132.3 ms 208 runs

Benchmark 2: node ./built/local/tsc.js Nicholas C. Zakas
Time (mean * o): 48.4 ms £ 1. h h d
Range (min .. max): 45.7 ms .. 52, @humanwhocodes.com

Summary ESLint enables the V8 compile cache by default in Node.js v22+. The

node ./built/local/tsc.js —version result on my machine is a load time reduction of around 90%.
2.52 = 9.96 times faster than node

April 28, 2025 at 7:43 PM & Everybody can reply,

12 reposts 75 likes 2 saves

Node.js user-land module loading: take 3

User JS modules

Execution

V8 bytecode

Compilation
(slow)

Type-stripped JS code

Type-stripping
User TS source code

First run

Node.js user-land module loading: take 3

User JS modules

Execution

V8 bytecode

Serialization o
/ Compilation

(slow)
V8 code cache
on disk Type-stripped JS code
Type-stripping
JS cache on User TS source code

disk
First run

Node.js user-land module loading: take 3

User JS modules

Execution

V8 bytecode

Deserialization
(fast)

JS source is still
V8 code cache needed for e.g.
on disk debuggers

Map (fast)

JS cache on User TS source code
disk

First run Second run
s

Node.js user-land module loading: take 3

With compile cache enabled via export NODE_COMPILE_CACHE=/tmp :

confidence improvement accuracy () (xx) (O
./node/benchmark/fixtures/strip-types-benchmark.js' 2.31 % *3.44% +4.62% *6....
./node/benchmark/fixtures/strip-types—-benchmark.ts' Fokok 65.37 % +3.99% +5.35% *7.03%
ects/node/benchmark/fixtures/transform-types-benchmark.js' 0.37 % +1.37% +1.82% *2.37%
ects/node/benchmark/fixtures/transform-types-benchmark.ts' *okok 128.86 % +7.94% +10.69% +14.17%

e Still a bunch of TODOs https://github.com/nodejs/node/issues/52696
e Might possibly enable it by default when it's stable enough

o There's a caveat of negative performance impact when the file is too small -

not sure where's the sweet spot yet

Another adventure: require(esm)

| stared at the ESM module loader for too long to figure out how to refactor
and integrate the compile cache..

Another adventure: require(esm)

node / lib / internal / modules / esm /| module_job.js ™ Top
Code Blame 224 lines (203 loc) -+ 7.97 KB 8 || Raw Q| &|| 2]~ @

50 class Modulelob {

53 constructor(loader, url, importAttributes = { __proto__: null },

65 // Wait for the ModuleWrap instance being linked with all dependencies.

66 v const link = async () => {

67 this.module = await this.modulePromise;

68 assert(this.module instanceof ModuleWrap);

69

s Can | just write a synchronous version of this @ @

71 from scratch and use that to load ESM

72 synchronously...

73

74 const dependencyJobs = [];

Implication of lack of require(esm)

Node.js ESM stabilized in 2020

{
"name” : "logger",
"type": is"_ "module” MIGRATE ALL THE PACKAGES
"exports”: "./index.js",

}

module-exports—=—elass—Logger—{}-

export default class Logger{};

Implication of lack of require(esm)

// CJS consumer could no longer load it
const Logger = require('logger'); // ¥ Throws ERR_REQUIRE_ESM!

Implication of lack of require(esm)

// Even consumers who thought they wrote ESM may no longer be able to load it

import Logger from 'logger'; // This should work, right?

Implication of lack of require(esm)

// Even consumers who thought they wrote ESM may no longer be able to load it
import Logger from 'logger'; // §® Throws ERR_REQUIRE_ESM

// What got run (magically transpiled by some tool or framework)
var _logger = _interopRequireDefault(require("logger"));// ¥ ERR_REQUIRE_ESM
function _interopRequireDefault(obj) {

return obj && obj.__esModule ? obj : { default: obj };

}
const Logger = _logger.default;

Q

Implication of lack of require(esm)

Many packages shipped two copies to maintain backward compatibility (dual packages)

{
"type": "module",

"scripts": {

"build”: "babel src --out-dir dist” Add a transpilation step
b
"exports": {
T A e Supply the Common)S version
‘require”: "./dist/index.cjs",

. . o index s" to code loading it with require()
\ UGS, -/ STC/inaex. Js e Supply the ESM version to code
) loading it with import

}

Implication of lack of require(esm)

Doubled the size of node_modules...

Sun Neutronstar Blackhole node_modules

e

HEAVIEST
OBJECTS IN THE
UNIVERSE

Implication of lack of require(esm)

(S B e7%] 73.6%

A" TR T35 72.4%

70.7%

69.5%

68.8%

67.2%

66.2%

65.0%

63.7%

61.2%

60.5%

60.1%

IW]WWF:W[*]

https://github.com/wooorm/npm-esm-vs-cjs/

2022-11-04

2023-02-06

2023-05-29

2023-08-24

2023-11-22

2024-02-20

2024-05-27

2024-08-28

2024-11-27

2025-02-28

2025-06-05

2025-10-02

Effectively made ESM a less
desirable execution format

5 years after ESM stabilization,
shipping dual is more
popular than than shipping
ESM directly

C'mon,

LL do something...

Implication of lack of require(esm)

oS IB187% 73.6%] 2022-11-04 e ANd many are still jUSt
i 7 | #sasozon shipping ESM transpiled into
Il S=ShE= 70.7%] 2023-05-29
. P . Common]S (faux ESM)
. e 69.5% | 2023-08-24))
_— | sz @ Statsinclude older versions;
57.2% | 2024-02-20 Actual Common)S numbers
se2% | HAY likely to be even higher
65.0% | 2024-08-28
63.7% | 2024-11-27
61.2% | 2025-02-28
A == 60.5%] 2025-06-05 t[j:on:s%r:nethmg
ﬁ“‘ﬂ'ﬂﬁi’iﬂllll\% 60.1%] 2025-10-02 LL
| esm | |[dual| [faux=]| | cis |

https://github.com/wooorm/npm-esm-vs-cjs/

Demotivated adoption of ESM

{> Code -0 Revisions 3 Y% Stars 215 ¥ Forks 5 Embed v <script src="https:// |'_|;| Eﬁ] Download ZIP

ES Modules are terrible, actually

E] es-modules-are-terrible-actually.md Raw

ES Modules are terrible, actually

This post was adapted from an earlier Twitter thread.

It's incredible how many collective developer hours have been wasted on pushing through the turd that is ES Modules (often
mistakenly called "ES6 Modules"). Causing a big ecosystem divide and massive tooling support issues, for... well, no reason,

really. There are no actual advantages to it. At all.

What if ESM can be loaded by require()...§

// CJS consumers won't be broken by the migration

const Logger = require('logger'); //

// Nor will faux-ESM consumers (or the frameworks/tools they use, so they
// can stop doing the magical transpilation!)
var _logger = _interopRequireDefault(require("logger"));// E4
function _interopRequireDefault(obj) {
return obj && obj.__esModule ? obj : { default: obj };

}
const Logger = _logger.default;

Shipping ESM would be simple again!

{ {
"name" : "logger", "name" : "logger",
"type”: "module”, "type": "module",
"scripts”: { "exports": "./index.js",
"build”: "babel src --out-dir dist" }
}
"exports": { ‘
ot A
"require”: "./dist/index.cjs",
"import": "./src/index.js" r‘\‘

}

. S

Going back to 2019

[WIP] Support requiring .mjs files #30891

i§ el weswigham wants to merge 5 commits into nodejs:master from weswigham:support-require-esm—in-the-style-of-TLA (B

Q) Conversation 88 < Commits 5 El Checks o Files changed 4
@ weswigham commented on Dec 10, 2019 #ee

This implements the ability to use require on .mjs files, loaded via the esm loader, using the same tradeoffs that top level
await makes in esm itself.

What this means: If possible, all execution and evaluation is done synchronously, via immediately unwrapping the execution's
component promises. This means that any and all existing code should have no cbservable change in behavior, as there exist
no asynchronous modules as of yet. The catch is that ence a module which reguires asynchronous execution is used, it must
yield to the event loop to perform that execution, which, in turn, can allow other code to execute before the continuation
after the async action, which is observable to callers of the now asynchronous module. If this matters to your callers, this
means making your module execution asynchronous could be considered a breaking change to your library, however in
practice, it will not matter for most callers. Moreover, as the ecosystem exists today, there are zero asynchronously executing
modules, and so until there are, there are no downsides to this approach at all, as no execution is changed from what one

Going back to 2019

e Concerns about safety as it nested libuv event loop iteration to support top-
level await, and could crash

e Lots of debates, stalled for too long, resources ran out

e Other contributors had priority to support import cjs, not require(esm)

e Contributors moved on after ESM stabilization in 2020

In reality, being a community-driven project means...

e No roadmaps

e No project
management

e Work doesn't get don
by itself

Work sponsored by
companies &
organizations

What the community
wants the imaginary
“Node.js team” to work on

Volunteer work done at
contributors’ free time

In reality, being a community-driven project means...

e 1 person saying no # consensus of 100+ collaborators
e Decision making is based on consensus seeking, no dictator
e Navigating through disagreements to find compromise & reach

consensus is also work
o Also doesn’t get done by itself!

e All these take time and can stall work

Why was require(esm) not there?

e Node.js documentation gave an answer since v12

® Spoiler alert - it's not accurate

e Made many believe it was not practical by design and stop asking

® Including myself before, since | didn't work with the ESM loader implementation

® When you don't know much about it, just take what the documentation says, right?

require #
The CommonJS module require always treats the files it references as CommonJS.

Using require toload an ES module is not supported because ES modules have asynchronous execution. Instead,
use import() toload an ES module from a CommonJS module.

Fast forward to 2023

e Fixing a memory leak, looked at a similar leak tied to V8 ESM implementation

e Wait a minute, V8's code is contradicting what the Node.js docs say?

require #
The CommonJS module require always treats the files it references as CommonJS.

Using require toload an ES module is not supported because ES modules have asynchronous execution. Instead,
use import() toload an ES module from a CommonJS module.

ESM without top-level await is synchronous?!

Didn’t the Node.js docs say ESM

execution is async? Why is there a
for (Handle<SourceTextModule> m : exec_list) { branch in V8&?

if (m->has_toplevel_await()) {
MAYBE _RETURN(ExecuteAsyncModule(isolate, m), Nothing<bool>());
} else {
if (!'ExecuteModule(isolate, m).ToHandle(&unused_result)) {
AsyncModuleExecutionRejected(isolate, m, exception);
} else {
JSPromise: :Resolve(capability, isolate->factory()->undefined_value());
}
}

You mean, if there’s no top level await, it's synchronously executed?
}

ESM without top-level await is synchronous?!

Mandated by spec: https.//tc39.es/ecma262/#sec-innermoduleevaluation

Normative: Synchronous based on a syntax and module graph #61

1oAYl littledan merged 2 commits into tc39:master from littledan:statically-synchronous (5 on Mar 26, 2019

() Conversation 34 -0 Commits 2 [Fl Checks o0 Files changed 2

w littledan commented on Mar 19, 2019 Member

This patch is a variant on #49 which determines which module subgraphs
are to be executed synchronously based on syntax (whether the module
contains a top-level await syntactically) and the dependency graph
(whether it imports a module which contains a top-level await,
recursively). This fixed check is designed to be more predictable and
analyzable.

Pseudocode of a require(esm) implementation

// Pseudo code - this needs access to native V8 APIs.
function requireESM(specifier) {
const linkedModule = fetchModuleGraphAndLinkSync(specifier);

if (linkedModule.hasTopLevelAwaitInGraph()) {

throw new ERR_REQUIRE_ASYNC_MODULE; Up to NOde.jS to make it
\ synchronous

const promise = linkedModule.evaluate();

// This is guaranteed by the ECMAScript specification.
assert.strictEqual(getPromiseState(promise), 'fulfilled');
assert.strictEqual(unwrapPromise(promise), undefined);

// The namespace is guaranteed to be be fully evaluated at this point if the
// module graph contains no top-level await.

return linkedModule.getNamespace() ;

Even the V8 API for checking TLA was already there

// Pseudo code - this needs access to native V8 APIs.
function requireESM(specifier) {
const linkedModule = fetchModuleGraphAndLinkSync(specifier);

if (linkedModule.hasTopLevelAwaitInGraph()) { V8 even already implemented

throw new ERR_REQUIRE_ASYNC_MODULE; this APl in 2020 because
}

const promise = linkedModule.evaluate();

// This is guaranteed by the ECMAScript specification.
assert.strictEqual(getPromiseState(promise), 'fulfilled');
assert.strictEqual(unwrapPromise(promise), undefined);

// The namespace is guaranteed to be be fully evaluated at this point if the
// module graph contains no top-level await.

return linkedModule.getNamespace() ;

ESM without TLA is not that unorthodox on the Web

9. If scriptis null or Is Async Module with scripf's record, scripfs base URL, and « » is true, then:

1. Invoke Reject Job Promise with job and TypeError.

Note: This will do nothing if Reject Job Promise was previously invoked with "SecurityError"
DOMException.

2. If newestWorker is null, then remove registration map[(registration’s storage key, serialized
scopeURL)).

3. Invoke Finish Job with job and abort these steps.

This Service Worker behaviour was brought up in the 2019 PR, but somehow remained a

niche knowledge mostly known to people who actually worked on ESM

ESM packages using top-level await are rare

Types of top 559 ESM packages (out of top 5000 packages)

ESM with TLA
1.1%

Only 6/5000 top high-impact
packages have TLA, 5/6 only were
not necessary and only added
during migration to ESM

ESM without TLA
98.9%

Top-level await is mostly used in apps/scripts/tests that import other modules, not
modules shared to and loaded by external code controlled by other people

require(esm) without TLA has theoretical guarantees

// Pseudo code - this needs access to native V8 APIs.
function requireESM(specifier) {
const linkedModule = fetchModuleGraphAndLinkSync(specifier);
if (linkedModule.hasTopLevelAwaitInGraph()) {
throw new ERR_REQUIRE_ASYNC_MODULE;
}
const promise = linkedModule.evaluate();
// This is guaranteed by the ECMAScript specification.
assert.strictEqual(getPromiseState(promise), 'fulfilled’);
assert.strictEqual(unwrapPromise(promise), undefined);
// The namespace is guaranteed to be be fully evaluated at this point if the
// module graph contains no top-level await.
return linkedModule.getNamespace() ;

It should be easy to implement, then, right?

// Pseudo code - this needs access to native V8 APIs.
function requireESM(specifier) {
const linkedModule = fetchModuleGraphAndLinkSync(specifier);
if (linkedModule.hasTopLevelAwaitInGraph()) {
throw new ERR_REQUIRE_ASYNC_MODULE;
}
const promise = linkedModule.evaluate();
// This is guaranteed by the ECMAScript specification. Ri ht?
assert.strictEqual(getPromiseState(promise), 'fulfilled'); é; ¢
assert.strictEqual(unwrapPromise(promise), undefined);
// The namespace is guaranteed to be be fully evaluated at this point if the
// module graph contains no top-level await.
return linkedModule.getNamespace() ;

It should be easy to implement, then, right?

// Pseudo code - this needs access to native V8 APIs.
function requireESM(specifier) {
const linkedModule = fetchModuleGraphAndLinkSync(specifier);
if (linkedModule.hasTopLevelAwaitInGraph()) {
throw new ERR_REQUIRE_ASYNC_MODULE;
}
const promise = linkedModule.evaluate();
// This is guaranteed by the ECMAScript specification.

assert.strictEqual(getPromiseState(promise), 'fulfilled'); N O

assert.strictEqual(unwrapPromise(promise), undefined);

// The namespace is guaranteed to be be fully evaluated at this poir
// module graph contains no top-level await.

return linkedModule.getNamespace() ;

The module loaders, from my perspective

e Node.js internal built-in loader: #4 £
o 400+]S, 900+ C++(LOC), nicely encapsulated

The module loaders, from my perspective

e Node.js internal built-in loader: #4 £

o 400+]S, 900+ C++(LOC), nicely encapsulated
e Node.js user-land Common]S loader: @ S @&

o 1000+ JS, 500+ C++ (LOC)

o Spaghetti code, monkey patched everywhere

The module loaders, from my perspective

e Node.js internal built-in loader: #4 £

o 400+]S, 900+ C++(LOC), nicely encapsulated
e Node.js user-land Common]S loader: @ S @&

o 1000+ JS, 500+ C++ (LOCQ)

o Spaghetti code, monkey patched everywhere
e Node.js user-land ESM loader: €@ @& 3¢ &

o 5000+ JS, 1000+ C++ (LOC)

o Big, convoluted code base, many early contributors no long active,

past record of endless debates

Restarting require(esm) in Node.js

Waited for other volunteers more familiar with ESM loader to refactor and
carve out a synchronous path...

Thought | only had to refactor the compilation part of the ESM loader to
implement compile cache, ended up reading the entire thing...

module: centralize SourcelextModule compilation for builtin loader

oAV nodejs-github-bot merged 1 commit into nodejs:main from joyeecheung:refactor-esm L) on Apr 4, 2024

L) Conversation 8 -0- Commits 1 [Fl Checks o Files changed 7
@ joyeecheung commented on Mar 31, 2024 Member = *°*
(70 -

This refactors the code that compiles SourceTextModule for the built-in ESM loader to use a common routine so that it's
easier to customize cache handling for the ESM loader. In addition this introduces a common symbol for import.meta and

import() so that we don't need to create additional closures as handlers, since we can get all the information we need from
Elam 370 aalllaanlsr aleanalys Thisa alvmss

I e

Restarting require(esm) in Node.js ¢

e Don't refactor the entire ESM loader

e Write new lines to implement a synchronous and simplified
ESM loading path for require()

e Lines added are easier to backport to older LTS than lines
changed, anyway

e Implication: takes more effort to consolidate code paths later

Making require(esm) happen

e (Re)started implementationin 2024, got support from Bloomberg
e Experimental release in 22.0.0, backported to 20

e Additional features and compat fixes to make it as non-breaking as possible

e Unflagged: ~20.19.0 | | >=22.12.0
> Implementation was 500+ LOC,

[63 files changed +1170 -79 lines changed others are te sts, dOCS, etc. Q Search within code Q3
v doc/api/cli.md [0 -3 +27 asmee <> [
. @@ -877,6 +877,18 @@ added: v11.8.0
877 877
878 878 Use the specified file as a security policy.
879 879

880 + ### "~ --experimental-require-module’
881 « +

882 + <!—— YAML

883 + added: REPLACEME

require(esm) is here!

All active LTS now supports require(esm)!
Packages that do not support EOL Node.js versions can count on it now
Many popular packages have started to drop dual and ship ESM-only

after require(esm) was unflagged
o Vite

Yargs

Babel

Storybook

Unjs packages..

Various tinylibs..

Various eslint plugins (h/t e18e)

O 0O O O O O O

Making require(esm) customizable

pirates / lib / index.js
+ Weekly Downloads

Code Blame 155 lines (138 loc) : 5.55 KB 42,554,450 ~N—

87 function addHook(hook, opts = {}) {

112 loaders [ext] = Module._extensions[ext] = function newLoader(mod, filename) {

115 if (shouldCompile(filename, exts, matcher, ignoreNodeModules)) {

116 compile = mod._compile;

117 v mod._compile = function _compile(code) {

118 // reset the compile immediately as otherwise we end up having the

119 // compile function being changed even though this loader might be reverted

120 // Not reverting it here leads to 1 Many, many very popular packages
s // addHook => revert => addHook > Laly on monkey patching to customize
122 // The compile function is also any .

123 mod._compile = compile; module Ioadlng

124 const newCode = hook(code, filename

125 if (typeof newCode !== 'string') {

ESM loading is encapsulated and not monkey patchable

pirates / lib / index.js

Code Blame 155 lines (138 loc) -+ 5.55 KB

87 function addHook(hook, opts = {}) {

112 loaders [ext] = Module._extensions[ext] = function newlLoader(mod, filename) {

115 if (shouldCompile(filename, exts, matcher, ignoreNodeModules)) {

116 compile = mod._compile;

117 v mod._compile = function _compile(code) {

118 // reset the compile immediately as otherwise we end up having the

119 // compile fur-tctlc.m being changed ev ESM dependencies inside this code
120 // Not reverting it here leads to lo

121 // addHook -> revert -> addHook -> ri won't be loaded through this

122 // The compile function is also anyw monkey-patched path ond
123 mod._compile = compile;

124 const newCode = hook(code, filename);

125 if (typeof newCode !== 'string') {

Making require(esm) customizable

Opening more spots for monkey patching creates more vicious
loops...what can we do about it?

Loader customization hooks: take 1

e --experimental-loader (experimental since v8.8.0 - 2017!)
e module.register() (experimental since v18.19.0)

// In register.mjs

module.register('./hooks.mjs', import.meta.url);

S node --import ./register.mjs app.mjs
Deprecated

S node --experimental-loader ./hooks.mjs app.mjs

Loader customization hooks: take 1

// In hooks.mjs
export async function resolve(specifier, context, nextResolve) {
if (specifier === 'my-custom-module')
return { url: 'file:///path/to/custom-module.mjs', shortCircuit: true };

return nextResolve(specifier, context);

\ Customize resolution

export async function load(url, context, nextLoad) {
const result = await nextLoad(url, context);
const instrumentedSource = ‘console.log('instrumented');\nS{result.source}";

return { ...result, source: instrumentedSource }; .
\ Modify source code

// In register.mjs
module.register('./hooks.mjs', import.meta.url);
e

Loader customization hooks: take 1

e Could not customize modules loaded through require() because one can't run

async customization in synchronous require()
e What's the module loader hook for if it can only customize <~30% of the modules in

the ecosystem?

Async In thread

--experimental-loader &
module.register() beforev20

Loader customization hooks: take 2

e How do you run async customization from sync require()?

e Answer: run it on a different thread - breaking change in v20

Works for all modules*

Async In thread Async

--experimental-loader & --experimental-loader &
module.register() beforev20 module.register () afterv20

Loader customization hooks: take 2

export async function resolve(specifier, context,

nextResolve) {

specifier: “my-custom-module” if (specifier === 'my-custom-module')
ﬁ return {
url: 'file:///path/to/custom-module.mjs’,
require('my-custom-module'); shortCircuit: true
}

return nextResolve(specifier, context);

}
Main thread Loader hook worker thread

Blocking using
Atomics.wait()

Loader customization hooks: take 2

export async function resolve(specifier, context,

nextResolve) {

specifier: “my-custom-module” if (specifier === 'my-custom-module')
/A return {
url: 'file:///path/to/custom-module.mjs’,
require('my-custom-module'); shortCircuit: true
G 0 s
url: “file://...” return nextResolve(specifier, context):
. }
Main thread Loader hook worker thread

Blocking using
Atomics.wait()

Loader customization hooks: take 2

New problem: many existing hooks need to run code on the main thread
* Pass non-transferable objects e.g. functions between modules and hooks

* Mutate module exports using data prepared in the hooks

// The loader code run on a separate thread now.

globalThis.__instrument = {};

export async function load(url, context, nextlLoad) {

const result = await nextlLoad(url, context);
globalThis.__instrument[url] = () => { /* instrumentation code */ }
// The module runs on the main thread and don't get the same globalThis.__instrument!
const instrumentedSource =

“globalThis.__instrument[$S{JSON.stringify(url)}]();\nS{result.source}’;

return { ...result, source: instrumentedSource };

Problems from being off-thread

pirates / lib / index.js

Code Blame 155 lines (138 loc) - 5.55 KB

87 function addHook(hook, opts = {}) {

112 loaders[ext] = Module._extensions[ext] = function newLoader(mod, filename) {

115 if (shouldCompile(filename, exts, matcher, ignoreNodeModules)) {

116 compile = mod._compile;

17 v mod._compile = function _« hook is a function, need to be run on
i // reset the complle M v o came thread the modules are run -
119 // compile function beir

120 // Not reverting it here NOW dO you transfer it to another

121 // addHook -> revert -> thread?

122 // The compile function L ! - . sec
123 mod._compile = compile;

124 const newCode = hook(code, filename);

125 if (typeof newCode !== 'string') {

Loader customization hooks: take 2

e Mixing User messages and locks with Node.js internal ones: prone to deadlocks

e Inter-thread communication comes with a performance overhead

let portInLoaderThread; // Must use ports and locks to talk to the thread running the modules
export async function initialize({ port }) {

portInLoaderThread = port;
}
export async function load(url, context, nextlLoad) {

const result = await nextLoad(url, context);

if (portInLoaderThread) { portInLoaderThread.postMessage({ type: 'instrument', url });}

const instrumentedSource =

“portInMainThread.on('message', (msg) => { /* runs on main thread */ });\n${result.source}";

return { ...result, source: instrumentedSource };

Loader customization hooks: take 2

e The require() onthe main thread, once customized to block on
loader thread, have many quirks and do not work like normal

require()

e Many users of --experimental-loader & module.register()
ended up keeping both hooks and still monkey patching Common]S

when the entry point is Common)S
o Did notreally reduce the monkey-patching in the wild

Loader customization hooks: take 3

Proposal for a simple, universal module loader hooks API to replace
require() monkey-patching #52219
Just one more API...one more

g@ joyeecheung opened on Mar 26, 2024 - edited by joyeecheung Edits + Member
Spinning off from #51977
Background

There has been wide-spread monkey-patching of the CJS loader in the ecosystem to customize the loading process of Node.js
(e.g. utility packages that abstract over the patching and get depended on by other packages e.g. require-in-the-middle,
pirates, or packages that do this on their own like tsx or ts-node). This includes but is not limited to patching
Module.prototype._compile , Module._resolveFilename , Module.prototype.require , require.extensions etc. To avoid
breaking them Node.js has to maintain the patchability of the CJS loader (even for the underscored methods on the prototype)
and this leads to very convoluted code in the CJS loader and also spreads to the ESM loader. It also makes refactoring of the
loaders for any readability or performance improvements difficult.

Loader customization hooks: take 3

New API: Just provide a simpler API that allows customizing
ESM/CJS/everything on the main thread synchronously

Works for all modules* Works for all modules

ANEVANEEYAN

Async In thread Async In thread

--experimental-loader & --experimental-loader & NeVY API:
module.register() beforev20 module.register() afterv20 module.registerHooks()

Loader customization hooks: take 3

// In hooks.mjs
export async function resolve(specifier, context, nextResolve) {
if (specifier === 'my-custom-module')
return { url: 'file:///path/to/custom-module.mjs', shortCircuit: true };
return nextResolve(specifier, context);
Y
export async function load(url, context, nextLoad) {
const result = await nextlLoad(url, context);
const instrumentedSource = ‘console.log('instrumented');\nS{result.source}";
return { ...result, source: instrumentedSource };
}
// In register.mjs, run on a different thread
module.register('./hooks.mjs', import.meta.url);
e

Loader customization hooks: take 3

// In register.mjs
function resolve(specifier, context, nextResolve) {
if (specifier === 'my-custom-module')
return { url: 'file:///path/to/custom-module.mjs', shortCircuit: true };

return nextResolve(specifier, context);

function load(url, context, nextLoad) {
const result = nextLoad(url, context);
const instrumentedSource = ‘console.log('instrumented');\nS{result.source}";
return { ...result, source: instrumentedSource };
}
// Same file because it’'s run on the same thread

module.registerHooks({ resolve, load });

Loader customization hooks: take 3

e Async handling is the least needed out of the three
e Many existing hooks are only doing work synchronously (because they
also monkey-patch Common])S)

Works for all modules* Works for all modules

ANEVANEEYAN

Async In thread Async In thread

--experimental-loader & --experimental-loader & NeVY API:
module.register() beforev20 module.register() afterv20 module.registerHooks()

Loader customization hooks: take 3

babel / packages / babel-register / src / worker-client.cts |f they really need to do something
async, users hook can and already

Code Blame 102 lines (80 loc) - 2.75 KB do spawn their own worker thread
38 class WorkerClient extends Client { to de-async
58 constructor() {
61 const subChannel = new WorkerClient.#worker_threads.MessageChannel();
62
63 this.#worker.postMessage(
64 { signal: this.#signal, port: subChannel.portl, action, payload },
65 [subChannel.porti],
66)
67
68 Atomics.wait(this.#signal, 0, 0);
69 const { message } = WorkerClient.#worker_threads.receiveMessageOnPort(

70 subChannel.port2,

Loader customization hooks: take 3

Giving hook authors more more
control & not mixing the messages

babel / packages / babel-register / src / worker-client.cts

Code Blame 102 lines (80 loc) - 2.75 KB & locks in the de-async worker also
38 class WorkerClient extends Client { helps avoiding deadlocks
58 constructor() {

61 const subChannel = new WorkerClient.#worker_threads.MessageChannel();
62

63 this.#worker.postMessage(

64 { signal: this.#signal, port: subChannel.portl, action, payload },
65 [subChannel.porti1l],

66) H

67

68 Atomics.wait(this.#signal, 0, 0);

69 const { message } = WorkerClient.#worker_threads.receiveMessageOnPort(

70 subChannel.port2,

Loader customization hooks: take 3

For hooks that do not need async handling, the new API is easier to use

pirates / lib / index.js

Code Blame 155 lines (138 loc) - 5.55 KB

87 function addHook(hook, opts = {}) {

112 loaders [ext] = Module._extensions[ext] = Filter extensions (PatChing internals)
115 if (shouldCompile(filename, exts, matcher. ianoreNodeModules)) {

-t compile.=. nod.complle; | Register customizations

117 v mod._compile = function _compile(code)

118 // reset the compile immediately as (Patchinginternals)

119 // compile function being changed even tnougn tnis loager mignt De revertea

120 // Not reverting it here leads to long useless compile chains when doing

121 // addHook -> revert -> addHook -> revert -> ...

122 // The compile function is also anyway created new when the loader is called a second tir
123 mod._compile = compile;

124 const newCode = hook(code, filename); |nvoke user hook function

anr e Y J R | Ry Ry G N (D, T e P tl 1L\ Y

Loader customization hooks

8 v function addHook(hook, options) {
9 v function load(url, context, nextLoad) {

10 const result = nextLoad(url, context);

11 const index = url.lastIndexOf('.');

12 const ext = url.slice(index);

13 if (!options.exts.includes(ext)) {
14 MBI TRSTRS Filter extensions (using public API)
15 }

16 const filename = fileURLToPath(url);

17 if ('options.matcher(filename)) {

i: , RREINL (EESHINE] Invoke user hook function

20 return { ...result, source: hook(result.source.toString(), filename) }

21 }

22 Reglster customizations
23 const registered = registerHooks({ load }); (public API)

- A

Loader customization hooks

8 v function addHook(hook, options) { This is run on the same thread the

9 v

10
11
12
13
14
15
16
17
18
19
20
21
22
23

- A

function load(url, context, nextLoad) {

modules are run, and works
const result = nextLoad(url, context); .
const index = url.lastIndexOf('.'); transparently with ESM

const ext = url.slice(index);
if (!options.exts.includes(ext)) {
—— Filter extensions (using public API)

}

const filename = fileURLToPath(url);

if (!options.matcher(filename)) {
return result;

}

return { ...result, source: hook(result.source.toString(), filename) }

Invoke user hook function

Register customizations

const registered = registertooks({ load }); (public API)

Where are we now?

e Implemented and landed after a lot of refactoring (again)

e module.registerHooks() is available fromv22

e Fixed most bugs based on user feedback, now mostly complete and has

fewer bugs/caveats than module.register()

Where are we now?

e Consider migrating to module.registerHooks() from --
experimental-loader /module.register() if/when you can drop
support for older Node.js and the hook does not really need to be async

e The old APIs has many bugs/caveats that are not solvable by design and

stabilization will be further away.

e Also, async overhead in Node.js is non-trivial
e Ifyou are still monkey patching Common]S loader for some

reason..migrate tomodule.registerHooks()

	Slide 1: Evolving the Node.js Module Loader
	Slide 2: About me
	Slide 3: This talk
	Slide 4: My first involvement in Node.js module loading: compile cache
	Slide 5: Node.js built-in module loading: ake 1
	Slide 6: Node.js built-in module loading: take 1
	Slide 7: Node.js built-in module loading: take 1
	Slide 8: Node.js built-in module loading: take 2
	Slide 9: Node.js built-in module loading: take 2
	Slide 10: Node.js built-in module loading: take 2
	Slide 11: Node.js built-in module loading: take 2
	Slide 12: Node.js built-in module loading: take 2
	Slide 13: Node.js user-land module loading: take 1
	Slide 14: Node.js user-land module loading: take 2
	Slide 15: Node.js user-land module loading: take 2
	Slide 16: Node.js user-land module loading: take 2?
	Slide 17: Fast forward to 2023..
	Slide 18: What the Node.js module loader looked like
	Slide 19: What the Node.js module loader looked like
	Slide 20: Being called Module.prototype._compile doesn’t make it internal
	Slide 21: And people monkey-patch it to customize compilation
	Slide 22: Vicious loop of monkey patching
	Slide 23: Vicious loop of monkey patching
	Slide 24: Restarting work on user-land compile cache
	Slide 25: Restarting work on user-land compile cache
	Slide 26: Minefield, you say?
	Slide 27: Yay it worked! Oh wait..
	Slide 28: Native compile cache is here!
	Slide 29: Good news in the wild
	Slide 30: Node.js user-land module loading: take 3
	Slide 31: Node.js user-land module loading: take 3
	Slide 32: Node.js user-land module loading: take 3
	Slide 33: Node.js user-land module loading: take 3
	Slide 34: Another adventure: require(esm)
	Slide 35: Another adventure: require(esm)
	Slide 36: Implication of lack of require(esm)
	Slide 37: Implication of lack of require(esm)
	Slide 38: Implication of lack of require(esm)
	Slide 39: Implication of lack of require(esm)
	Slide 40: Implication of lack of require(esm)
	Slide 41: Implication of lack of require(esm)
	Slide 42: Implication of lack of require(esm)
	Slide 43: Implication of lack of require(esm)
	Slide 44: Demotivated adoption of ESM
	Slide 45: What if ESM can be loaded by require()...🤔
	Slide 46: Shipping ESM would be simple again!
	Slide 47: Going back to 2019
	Slide 48: Going back to 2019
	Slide 49: In reality, being a community-driven project means…
	Slide 50: In reality, being a community-driven project means…
	Slide 51: Why was require(esm) not there?
	Slide 52: Fast forward to 2023
	Slide 53: ESM without top-level await is synchronous?!
	Slide 54: ESM without top-level await is synchronous?!
	Slide 55: Pseudocode of a require(esm) implementation
	Slide 56: Even the V8 API for checking TLA was already there
	Slide 57: ESM without TLA is not that unorthodox on the Web
	Slide 58: ESM packages using top-level await are rare
	Slide 59: require(esm) without TLA has theoretical guarantees
	Slide 60: It should be easy to implement, then, right?
	Slide 61: It should be easy to implement, then, right?
	Slide 62: The module loaders, from my perspective
	Slide 63: The module loaders, from my perspective
	Slide 64: The module loaders, from my perspective
	Slide 65: Restarting require(esm) in Node.js
	Slide 66: Restarting require(esm) in Node.js 💡
	Slide 67: Making require(esm) happen
	Slide 68: require(esm) is here!
	Slide 69: Making require(esm) customizable
	Slide 70: ESM loading is encapsulated and not monkey patchable
	Slide 71: Making require(esm) customizable
	Slide 72: Loader customization hooks: take 1
	Slide 73: Loader customization hooks: take 1
	Slide 74: Loader customization hooks: take 1
	Slide 75: Loader customization hooks: take 2
	Slide 76: Loader customization hooks: take 2
	Slide 77: Loader customization hooks: take 2
	Slide 78: Loader customization hooks: take 2
	Slide 79: Problems from being off-thread
	Slide 80: Loader customization hooks: take 2
	Slide 81: Loader customization hooks: take 2
	Slide 82: Loader customization hooks: take 3
	Slide 83: Loader customization hooks: take 3
	Slide 84: Loader customization hooks: take 3
	Slide 85: Loader customization hooks: take 3
	Slide 86: Loader customization hooks: take 3
	Slide 87: Loader customization hooks: take 3
	Slide 88: Loader customization hooks: take 3
	Slide 89: Loader customization hooks: take 3
	Slide 90: Loader customization hooks
	Slide 91: Loader customization hooks
	Slide 92: Where are we now?
	Slide 93: Where are we now?
	Slide 94: Thanks!

