
Evolving the Node.js
Module Loader
Node.jsのモジュールローダー

を進化させる

About me

● Joyee Cheung 張秋怡（中国・広州出身、スペイン・ア・コルーニャ在住）

● @joyeecheung on Github, @joyeecheung.bsky.social on BlueSky

● Igalia & Bloomberg

● Node.js TSC member & V8 committer

● Been tinkering with various parts of Node.js

● Recently been working on the Node.js module loader

This talk
● How some recent changes in Node.js module loader(s?) came about,

from my perspective

● The challenges of evolving the module loader

My first involvement in Node.js module loading: compile cache

● Node.js core is roughly written in half JS, half C++

● JS half in lib/

● C++ half in src/

Node.js built-in module loading: ake 1

lib/fs.js…

● Unlike C++, JS isn’t typically compiled ahead of time

● Originally, Node.js embedded the JS into the executable

Node.js executable

lib/fs.js…

Embedding at
build time

Node.js built-in module loading: take 1

lib/fs.js…

The JS code was parsed & compiled at run time, usually into bytecode first
(after V8 Ignition was rolled out)

Node.js executable

lib/fs.js…

Embedding at
build time

V8 bytecode

Compilation at run time

Node.js built-in module loading: take 1

lib/fs.js…

The bytecode was executed at run time to initialize builtins like fs, http, etc.

Node.js executable

Builtins: fs, http, etc.

lib/fs.js…

Embedding at
build time

Execution at run time

V8 bytecode

Compilation at run time

Node.js built-in module loading: take 2
Proposed by Yang Guo (ex-V8 engineer who worked on V8 code cache)

Node.js built-in module loading: take 2
At build time, Node.js pre-compile the JS, serialize the V8 code cache

(bytecode + metadata)

lib/fs.js…

V8 code cache

Pre-compile at
build time

Node.js built-in module loading: take 2
● The source code and the code cache can be compiled into the executable

● The source code is still needed for debugging and better stack traces

lib/fs.js…

V8 code cache

Node.js executable

lib/fs.js…V8 code cache

Pre-compile at
build time

Embedding at
build time

Node.js built-in module loading: take 2

lib/fs.js…

Deserialize the bytecode at run time, saving parsing and compilation time

V8 code cache

Node.js executable

Node.js built-in modules

lib/fs.js…V8 code cache

Pre-compile at
build time

Embedding at
build time

Execution at run time

V8 bytecode

Deserialize at run time

Node.js built-in module loading: take 2
Added code cache integration for Node.js internal built-ins in 2018

Great! Maybe it can be done for user-land modules too?

Node.js user-land module loading: take 1

User JS source code

V8 bytecode

First run

User JS modules

Execution

Compilation

(slow)

Node.js user-land module loading: take 2

User JS source code

V8 bytecode

First run

User JS modules

V8 code cache
on disk

Execution

Compilation

(slow)

Serialization

Great! Maybe it can be done for user-land modules too?

Node.js user-land module loading: take 2

User JS source code

V8 bytecode

First run

User JS modules

V8 code cache
on disk

Execution

Compilation

(slow)

Serialization

User JS source code

V8 bytecode

Second run

User JS modules

V8 code cache
on disk

Execution

Deserialization

(fast)

Map (fast)

Great! Maybe it can be done for user-land modules too?

● Discussed at one of the Node.js collaboration summits

● It’s already implemented in the user-land by a package!

● No need to implement it in core?

Node.js user-land module loading: take 2?

Fast forward to 2023..

The user-land solution

could affect ESM

adoption?

※ Code from pre ES6 era

What the Node.js module loader looked like

What the Node.js module loader looked like

Naming it Module.prototype._compile should be enough to

tell users this is not public API and can break any time, right?

Being called Module.prototype._compile doesn’t make it internal

Hyrum's Law

With a sufficient number of users of an API,

it does not matter what you promise in the contract:

all observable behaviors of your system

will be depended on by somebody.

And people monkey-patch it to customize compilation

What if Node.js refactored and removed this internal method?

Or no longer invoked it internally? Or invoked at a different time?

Or added other logic that this is not taking care of?

Vicious loop of monkey patching

By patching internals, it’s not future-proof when new features are

integrated…

You need access to more internals to keep the patched internals work with

every internal!

Vicious loop of monkey patching
● Better implement it in core to support new features e.g. ESM…

● Also, Chrome (and most browsers) implements this internally, it makes

sense for Node.js to implement it internally too

Restarting work on user-land compile cache

Restarting work on user-land compile cache

● Addressed security concerns (out of Node.js threat model - which

trusts everything from the file system)

● Got support from Bloomberg to work on it (h/t Rob)

● Refactored the spaghetti internals on the minefield to share caching

logic everywhere compilation happens

○ Tried my best not to break anyone

Minefield, you say?

Changing arguments or return types of

underscored methods breaks popular

packages

What if I want to share compilation logic

with other (slightly different) code?

(╯°□°)╯︵┻━┻

Yay it worked! Oh wait..
Fixed a V8 bug for the API that only Node.js uses to support import()

Native compile cache is here!

● Landed initial implementation in 22.1.0

○ NODE_COMPILE_CACHE=/path/to/cache/dir to enable

○ Generate code cache in the specified directory in the first run, reuse code

cache in second run (if the code doesn’t change)

○ Supports both CommonJS and ESM transparently

● Added JS API in 22.8.0 for CLI tools

○ module.enableCompileCache()

Good news in the wild
Implementing it natively also allowed it to

go faster than a user-land

implementation

Node.js user-land module loading: take 3

Type-stripped JS code

V8 bytecode

First run

User JS modules

Execution

Compilation

(slow)

User TS source code

Type-stripping

Node.js user-land module loading: take 3

Type-stripped JS code

V8 bytecode

First run

User JS modules

V8 code cache
on disk

Execution

Compilation

(slow)

Serialization

User TS source code

Type-stripping

JS cache on
disk

Node.js user-land module loading: take 3

Type-stripped JS code

V8 bytecode

First run

User JS modules

V8 code cache
on disk

Execution

Compilation

(slow)

Serialization

V8 bytecode

Second run

User JS modules

V8 code cache
on disk

Execution

User TS source code User TS source code

Type-stripping

Deserialization

(fast)

JS cache on
disk

JS cache on
disk

Map (fast)

JS source is still

needed for e.g.

debuggers

Node.js user-land module loading: take 3

● Still a bunch of TODOs https://github.com/nodejs/node/issues/52696

● Might possibly enable it by default when it’s stable enough

○ There’s a caveat of negative performance impact when the file is too small -

not sure where’s the sweet spot yet

Another adventure: require(esm)

I stared at the ESM module loader for too long to figure out how to refactor

and integrate the compile cache..

Another adventure: require(esm)

Can I just write a synchronous version of this

from scratch and use that to load ESM

synchronously…

Implication of lack of require(esm)

MIGRATE ALL THE PACKAGES

Node.js ESM stabilized in 2020

{
"name": "logger",
"type": "commonjs", "module"
"exports": "./index.js",

}

module.exports = class Logger {};

export default class Logger{};

Implication of lack of require(esm)
// CJS consumer could no longer load it

const Logger = require('logger'); // Throws ERR_REQUIRE_ESM!

Implication of lack of require(esm)
// Even consumers who thought they wrote ESM may no longer be able to load it

import Logger from 'logger'; // This should work, right?

Implication of lack of require(esm)
// Even consumers who thought they wrote ESM may no longer be able to load it

import Logger from 'logger'; // Throws ERR_REQUIRE_ESM

// What got run (magically transpiled by some tool or framework)

var _logger = _interopRequireDefault(require("logger"));// ERR_REQUIRE_ESM

function _interopRequireDefault(obj) {

return obj && obj.__esModule ? obj : { default: obj };

}

const Logger = _logger.default;

Implication of lack of require(esm)
Many packages shipped two copies to maintain backward compatibility (dual packages)

{
"type": "module",
"scripts": {
"build": "babel src --out-dir dist"

},
"exports": {
".": {
"require": "./dist/index.cjs",
"import": "./src/index.js"

}
}

}

Add a transpilation step

● Supply the CommonJS version

to code loading it with require()

● Supply the ESM version to code

loading it with import

Implication of lack of require(esm)
Doubled the size of node_modules…

Implication of lack of require(esm)
● Effectively made ESM a less

desirable execution format

● 5 years after ESM stabilization,

shipping dual is more

popular than than shipping

ESM directly

https://github.com/wooorm/npm-esm-vs-cjs/

Implication of lack of require(esm)
● And many are still just

shipping ESM transpiled into

CommonJS (faux ESM)

● Stats include older versions;

Actual CommonJS numbers

likely to be even higher

https://github.com/wooorm/npm-esm-vs-cjs/

Demotivated adoption of ESM

What if ESM can be loaded by require()...
// CJS consumers won’t be broken by the migration

const Logger = require('logger'); //

// Nor will faux-ESM consumers (or the frameworks/tools they use, so they

// can stop doing the magical transpilation!)

var _logger = _interopRequireDefault(require("logger"));//

function _interopRequireDefault(obj) {

return obj && obj.__esModule ? obj : { default: obj };

}

const Logger = _logger.default;

Shipping ESM would be simple again!

{
"name": "logger",
"type": "module",
"scripts": {
"build": "babel src --out-dir dist"

},
"exports": {
".": {
"require": "./dist/index.cjs",
"import": "./src/index.js"

}
}

}

{
"name": "logger",
"type": "module",
"exports": "./index.js",

}

Going back to 2019

Going back to 2019

● Concerns about safety as it nested libuv event loop iteration to support top-

level await, and could crash

● Lots of debates, stalled for too long, resources ran out

● Other contributors had priority to support import cjs, not require(esm)

● Contributors moved on after ESM stabilization in 2020

In reality, being a community-driven project means…

Volunteer work done at
contributors’ free time

Work sponsored by
companies &
organizations

● No roadmaps

● No project

management

● Work doesn’t get done

by itself

What the community
wants the imaginary
“Node.js team” to work on

In reality, being a community-driven project means…

● 1 person saying no ≠ consensus of 100+ collaborators

● Decision making is based on consensus seeking, no dictator

● Navigating through disagreements to find compromise & reach

consensus is also work

○ Also doesn’t get done by itself!

● All these take time and can stall work

Why was require(esm) not there?
● Node.js documentation gave an answer since v12

● Spoiler alert – it’s not accurate

● Made many believe it was not practical by design and stop asking

● Including myself before, since I didn’t work with the ESM loader implementation

● When you don’t know much about it, just take what the documentation says, right?

Fast forward to 2023
● Fixing a memory leak, looked at a similar leak tied to V8’ ESM implementation

● Wait a minute, V8’s code is contradicting what the Node.js docs say?

ESM without top-level await is synchronous?!

for (Handle<SourceTextModule> m : exec_list) {
if (m->has_toplevel_await()) {

MAYBE_RETURN(ExecuteAsyncModule(isolate, m), Nothing<bool>());
} else {

if (!ExecuteModule(isolate, m).ToHandle(&unused_result)) {
AsyncModuleExecutionRejected(isolate, m, exception);

} else {
JSPromise::Resolve(capability, isolate->factory()->undefined_value());

}
}

}

Didn’t the Node.js docs say ESM
execution is async? Why is there a
branch in V8?

You mean, if there’s no top level await, it’s synchronously executed?

ESM without top-level await is synchronous?!
Mandated by spec: https://tc39.es/ecma262/#sec-innermoduleevaluation

// Pseudo code - this needs access to native V8 APIs.
function requireESM(specifier) {

const linkedModule = fetchModuleGraphAndLinkSync(specifier);
if (linkedModule.hasTopLevelAwaitInGraph()) {

throw new ERR_REQUIRE_ASYNC_MODULE;
}
const promise = linkedModule.evaluate();
// This is guaranteed by the ECMAScript specification.
assert.strictEqual(getPromiseState(promise), 'fulfilled’);
assert.strictEqual(unwrapPromise(promise), undefined);
// The namespace is guaranteed to be be fully evaluated at this point if the
// module graph contains no top-level await.
return linkedModule.getNamespace();

}

Pseudocode of a require(esm) implementation

Up to Node.js to make it
synchronous

// Pseudo code - this needs access to native V8 APIs.
function requireESM(specifier) {

const linkedModule = fetchModuleGraphAndLinkSync(specifier);
if (linkedModule.hasTopLevelAwaitInGraph()) {

throw new ERR_REQUIRE_ASYNC_MODULE;
}
const promise = linkedModule.evaluate();
// This is guaranteed by the ECMAScript specification.
assert.strictEqual(getPromiseState(promise), 'fulfilled’);
assert.strictEqual(unwrapPromise(promise), undefined);
// The namespace is guaranteed to be be fully evaluated at this point if the
// module graph contains no top-level await.
return linkedModule.getNamespace();

}

Even the V8 API for checking TLA was already there

V8 even already implemented
this API in 2020 because …

ESM without TLA is not that unorthodox on the Web

This Service Worker behaviour was brought up in the 2019 PR, but somehow remained a

niche knowledge mostly known to people who actually worked on ESM

ESM packages using top-level await are rare

Only 6/5000 top high-impact

packages have TLA, 5/6 only were

not necessary and only added

during migration to ESM

Top-level await is mostly used in apps/scripts/tests that import other modules, not

modules shared to and loaded by external code controlled by other people

// Pseudo code - this needs access to native V8 APIs.
function requireESM(specifier) {

const linkedModule = fetchModuleGraphAndLinkSync(specifier);
if (linkedModule.hasTopLevelAwaitInGraph()) {

throw new ERR_REQUIRE_ASYNC_MODULE;
}
const promise = linkedModule.evaluate();
// This is guaranteed by the ECMAScript specification.
assert.strictEqual(getPromiseState(promise), 'fulfilled’);
assert.strictEqual(unwrapPromise(promise), undefined);
// The namespace is guaranteed to be be fully evaluated at this point if the
// module graph contains no top-level await.
return linkedModule.getNamespace();

}

require(esm) without TLA has theoretical guarantees

// Pseudo code - this needs access to native V8 APIs.
function requireESM(specifier) {

const linkedModule = fetchModuleGraphAndLinkSync(specifier);
if (linkedModule.hasTopLevelAwaitInGraph()) {

throw new ERR_REQUIRE_ASYNC_MODULE;
}
const promise = linkedModule.evaluate();
// This is guaranteed by the ECMAScript specification.
assert.strictEqual(getPromiseState(promise), 'fulfilled’);
assert.strictEqual(unwrapPromise(promise), undefined);
// The namespace is guaranteed to be be fully evaluated at this point if the
// module graph contains no top-level await.
return linkedModule.getNamespace();

}

It should be easy to implement, then, right?

Right?

// Pseudo code - this needs access to native V8 APIs.
function requireESM(specifier) {

const linkedModule = fetchModuleGraphAndLinkSync(specifier);
if (linkedModule.hasTopLevelAwaitInGraph()) {

throw new ERR_REQUIRE_ASYNC_MODULE;
}
const promise = linkedModule.evaluate();
// This is guaranteed by the ECMAScript specification.
assert.strictEqual(getPromiseState(promise), 'fulfilled’);
assert.strictEqual(unwrapPromise(promise), undefined);
// The namespace is guaranteed to be be fully evaluated at this point if the
// module graph contains no top-level await.
return linkedModule.getNamespace();

}

It should be easy to implement, then, right?

NO

The module loaders, from my perspective
● Node.js internal built-in loader:

○ 400+ JS, 900+ C++(LOC), nicely encapsulated

The module loaders, from my perspective
● Node.js internal built-in loader:

○ 400+ JS, 900+ C++(LOC), nicely encapsulated

● Node.js user-land CommonJS loader:

○ 1000+ JS, 500+ C++ (LOC)

○ Spaghetti code, monkey patched everywhere

● Node.js internal built-in loader:

○ 400+ JS, 900+ C++(LOC), nicely encapsulated

● Node.js user-land CommonJS loader:

○ 1000+ JS, 500+ C++ (LOC)

○ Spaghetti code, monkey patched everywhere

● Node.js user-land ESM loader:

○ 5000+ JS, 1000+ C++ (LOC)

○ Big, convoluted code base, many early contributors no long active,

past record of endless debates

The module loaders, from my perspective

Restarting require(esm) in Node.js
● Waited for other volunteers more familiar with ESM loader to refactor and

carve out a synchronous path…

● Thought I only had to refactor the compilation part of the ESM loader to

implement compile cache, ended up reading the entire thing…

Restarting require(esm) in Node.js
● Don’t refactor the entire ESM loader

● Write new lines to implement a synchronous and simplified

ESM loading path for require()

● Lines added are easier to backport to older LTS than lines

changed, anyway

● Implication: takes more effort to consolidate code paths later

Making require(esm) happen
● (Re)started implementation in 2024, got support from Bloomberg

● Experimental release in 22.0.0, backported to 20

● Additional features and compat fixes to make it as non-breaking as possible

● Unflagged: ^20.19.0 || >=22.12.0
※ Implementation was 500+ LOC,

others are tests, docs, etc.

require(esm) is here!
● All active LTS now supports require(esm)!

● Packages that do not support EOL Node.js versions can count on it now

● Many popular packages have started to drop dual and ship ESM-only

after require(esm) was unflagged

○ Vite

○ Yargs

○ Babel

○ Storybook

○ Unjs packages..

○ Various tinylibs..

○ Various eslint plugins (h/t e18e)

○ …

Making require(esm) customizable

Many, many very popular packages

rely on monkey patching to customize

module loading

ESM loading is encapsulated and not monkey patchable

ESM dependencies inside this code

won’t be loaded through this

monkey-patched path

Making require(esm) customizable

Opening more spots for monkey patching creates more vicious

loops…what can we do about it?

Loader customization hooks: take 1
● --experimental-loader (experimental since v8.8.0 - 2017!)

● module.register() (experimental since v18.19.0)

// In register.mjs

module.register('./hooks.mjs', import.meta.url);

$ node --import ./register.mjs app.mjs

Deprecated

$ node --experimental-loader ./hooks.mjs app.mjs

Loader customization hooks: take 1
// In hooks.mjs

export async function resolve(specifier, context, nextResolve) {

if (specifier === 'my-custom-module')

return { url: 'file:///path/to/custom-module.mjs', shortCircuit: true };

return nextResolve(specifier, context);

}

export async function load(url, context, nextLoad) {

const result = await nextLoad(url, context);

const instrumentedSource = `console.log('instrumented');\n${result.source}`;

return { ...result, source: instrumentedSource };

}

// In register.mjs

module.register('./hooks.mjs', import.meta.url);

Customize resolution

Modify source code

Loader customization hooks: take 1
● Could not customize modules loaded through require() because one can’t run

async customization in synchronous require()

● What’s the module loader hook for if it can only customize <~30% of the modules in

the ecosystem?

Async In thread

--experimental-loader &
module.register() before v20

Works for all modules

Loader customization hooks: take 2
● How do you run async customization from sync require()?

● Answer: run it on a different thread – breaking change in v20

Async In thread Async In thread

--experimental-loader &
module.register() before v20

--experimental-loader &
module.register() after v20

Works for all modules Works for all modules*

Loader customization hooks: take 2
export async function resolve(specifier, context,

nextResolve) {

if (specifier === 'my-custom-module')

return {

url: 'file:///path/to/custom-module.mjs’,

shortCircuit: true

};

return nextResolve(specifier, context);

}

require('my-custom-module');

Main thread Loader hook worker thread

specifier: “my-custom-module”

Blocking using

Atomics.wait()

Loader customization hooks: take 2
export async function resolve(specifier, context,

nextResolve) {

if (specifier === 'my-custom-module')

return {

url: 'file:///path/to/custom-module.mjs’,

shortCircuit: true

};

return nextResolve(specifier, context);

}

require('my-custom-module');

Main thread Loader hook worker thread

specifier: “my-custom-module”

url: “file://...”

Blocking using

Atomics.wait()

Loader customization hooks: take 2

// The loader code run on a separate thread now.

globalThis.__instrument = {};

export async function load(url, context, nextLoad) {

const result = await nextLoad(url, context);

globalThis.__instrument[url] = () => { /* instrumentation code */ }

// The module runs on the main thread and don't get the same globalThis.__instrument!

const instrumentedSource =

`globalThis.__instrument[${JSON.stringify(url)}]();\n${result.source}`;

return { ...result, source: instrumentedSource };

}

New problem: many existing hooks need to run code on the main thread

• Pass non-transferable objects e.g. functions between modules and hooks

• Mutate module exports using data prepared in the hooks

Problems from being off-thread

hook is a function, need to be run on

the same thread the modules are run -

how do you transfer it to another

thread?

● Mixing User messages and locks with Node.js internal ones: prone to deadlocks

● Inter-thread communication comes with a performance overhead

Loader customization hooks: take 2

let portInLoaderThread; // Must use ports and locks to talk to the thread running the modules

export async function initialize({ port }) {
portInLoaderThread = port;

}

export async function load(url, context, nextLoad) {
const result = await nextLoad(url, context);

if (portInLoaderThread) { portInLoaderThread.postMessage({ type: 'instrument', url });}

const instrumentedSource =
`portInMainThread.on('message', (msg) => { /* runs on main thread */ });\n${result.source}`;

return { ...result, source: instrumentedSource };

}

● The require() on the main thread, once customized to block on

loader thread, have many quirks and do not work like normal

require()

● Many users of --experimental-loader & module.register()
ended up keeping both hooks and still monkey patching CommonJS

when the entry point is CommonJS

○ Did not really reduce the monkey-patching in the wild

Loader customization hooks: take 2

Loader customization hooks: take 3

Just one more API…one more

New API: Just provide a simpler API that allows customizing

ESM/CJS/everything on the main thread synchronously

Loader customization hooks: take 3

Works for all modules

Async In thread

New API:

module.registerHooks()

Async In thread Async In thread

--experimental-loader &
module.register() before v20

--experimental-loader &
module.register() after v20

Works for all modules Works for all modules*

Loader customization hooks: take 3
// In hooks.mjs

export async function resolve(specifier, context, nextResolve) {

if (specifier === 'my-custom-module')

return { url: 'file:///path/to/custom-module.mjs', shortCircuit: true };

return nextResolve(specifier, context);

}

export async function load(url, context, nextLoad) {

const result = await nextLoad(url, context);

const instrumentedSource = `console.log('instrumented');\n${result.source}`;

return { ...result, source: instrumentedSource };

}

// In register.mjs, run on a different thread

module.register('./hooks.mjs', import.meta.url);

Loader customization hooks: take 3
// In register.mjs

export async function resolve(specifier, context, nextResolve) {

if (specifier === 'my-custom-module')

return { url: 'file:///path/to/custom-module.mjs', shortCircuit: true };

return nextResolve(specifier, context);

}

export async function load(url, context, nextLoad) {

const result = await nextLoad(url, context);

const instrumentedSource = `console.log('instrumented');\n${result.source}`;

return { ...result, source: instrumentedSource };

}

// Same file because it’s run on the same thread

module.registerHooks({ resolve, load });

● Async handling is the least needed out of the three

● Many existing hooks are only doing work synchronously (because they

also monkey-patch CommonJS)

Loader customization hooks: take 3

Works for all modules

Async In thread

New API:

module.registerHooks()

Async In thread Async In thread

--experimental-loader &
module.register() before v20

--experimental-loader &
module.register() after v20

Works for all modules Works for all modules*

Loader customization hooks: take 3
If they really need to do something
async, users hook can and already
do spawn their own worker thread
to de-async

Loader customization hooks: take 3
Giving hook authors more more

control & not mixing the messages

& locks in the de-async worker also

helps avoiding deadlocks

For hooks that do not need async handling, the new API is easier to use

Loader customization hooks: take 3

Filter extensions (patching internals)

Register customizations

(patching internals)

Invoke user hook function

Loader customization hooks

Invoke user hook function

Filter extensions (using public API)

Register customizations

(public API)

Loader customization hooks
This is run on the same thread the

modules are run, and works

transparently with ESM

Invoke user hook function

Filter extensions (using public API)

Register customizations

(public API)

Where are we now?

● Implemented and landed after a lot of refactoring (again)

● module.registerHooks() is available from v22

● Fixed most bugs based on user feedback, now mostly complete and has

fewer bugs/caveats than module.register()

Where are we now?

● Consider migrating to module.registerHooks() from --

experimental-loader / module.register() if/when you can drop

support for older Node.js and the hook does not really need to be async

● The old APIs has many bugs/caveats that are not solvable by design and

stabilization will be further away.

● Also, async overhead in Node.js is non-trivial

● If you are still monkey patching CommonJS loader for some

reason..migrate to module.registerHooks()

Thanks!

	Slide 1: Evolving the Node.js Module Loader
	Slide 2: About me
	Slide 3: This talk
	Slide 4: My first involvement in Node.js module loading: compile cache
	Slide 5: Node.js built-in module loading: ake 1
	Slide 6: Node.js built-in module loading: take 1
	Slide 7: Node.js built-in module loading: take 1
	Slide 8: Node.js built-in module loading: take 2
	Slide 9: Node.js built-in module loading: take 2
	Slide 10: Node.js built-in module loading: take 2
	Slide 11: Node.js built-in module loading: take 2
	Slide 12: Node.js built-in module loading: take 2
	Slide 13: Node.js user-land module loading: take 1
	Slide 14: Node.js user-land module loading: take 2
	Slide 15: Node.js user-land module loading: take 2
	Slide 16: Node.js user-land module loading: take 2?
	Slide 17: Fast forward to 2023..
	Slide 18: What the Node.js module loader looked like
	Slide 19: What the Node.js module loader looked like
	Slide 20: Being called Module.prototype._compile doesn’t make it internal
	Slide 21: And people monkey-patch it to customize compilation
	Slide 22: Vicious loop of monkey patching
	Slide 23: Vicious loop of monkey patching
	Slide 24: Restarting work on user-land compile cache
	Slide 25: Restarting work on user-land compile cache
	Slide 26: Minefield, you say?
	Slide 27: Yay it worked! Oh wait..
	Slide 28: Native compile cache is here!
	Slide 29: Good news in the wild
	Slide 30: Node.js user-land module loading: take 3
	Slide 31: Node.js user-land module loading: take 3
	Slide 32: Node.js user-land module loading: take 3
	Slide 33: Node.js user-land module loading: take 3
	Slide 34: Another adventure: require(esm)
	Slide 35: Another adventure: require(esm)
	Slide 36: Implication of lack of require(esm)
	Slide 37: Implication of lack of require(esm)
	Slide 38: Implication of lack of require(esm)
	Slide 39: Implication of lack of require(esm)
	Slide 40: Implication of lack of require(esm)
	Slide 41: Implication of lack of require(esm)
	Slide 42: Implication of lack of require(esm)
	Slide 43: Implication of lack of require(esm)
	Slide 44: Demotivated adoption of ESM
	Slide 45: What if ESM can be loaded by require()...🤔
	Slide 46: Shipping ESM would be simple again!
	Slide 47: Going back to 2019
	Slide 48: Going back to 2019
	Slide 49: In reality, being a community-driven project means…
	Slide 50: In reality, being a community-driven project means…
	Slide 51: Why was require(esm) not there?
	Slide 52: Fast forward to 2023
	Slide 53: ESM without top-level await is synchronous?!
	Slide 54: ESM without top-level await is synchronous?!
	Slide 55: Pseudocode of a require(esm) implementation
	Slide 56: Even the V8 API for checking TLA was already there
	Slide 57: ESM without TLA is not that unorthodox on the Web
	Slide 58: ESM packages using top-level await are rare
	Slide 59: require(esm) without TLA has theoretical guarantees
	Slide 60: It should be easy to implement, then, right?
	Slide 61: It should be easy to implement, then, right?
	Slide 62: The module loaders, from my perspective
	Slide 63: The module loaders, from my perspective
	Slide 64: The module loaders, from my perspective
	Slide 65: Restarting require(esm) in Node.js
	Slide 66: Restarting require(esm) in Node.js 💡
	Slide 67: Making require(esm) happen
	Slide 68: require(esm) is here!
	Slide 69: Making require(esm) customizable
	Slide 70: ESM loading is encapsulated and not monkey patchable
	Slide 71: Making require(esm) customizable
	Slide 72: Loader customization hooks: take 1
	Slide 73: Loader customization hooks: take 1
	Slide 74: Loader customization hooks: take 1
	Slide 75: Loader customization hooks: take 2
	Slide 76: Loader customization hooks: take 2
	Slide 77: Loader customization hooks: take 2
	Slide 78: Loader customization hooks: take 2
	Slide 79: Problems from being off-thread
	Slide 80: Loader customization hooks: take 2
	Slide 81: Loader customization hooks: take 2
	Slide 82: Loader customization hooks: take 3
	Slide 83: Loader customization hooks: take 3
	Slide 84: Loader customization hooks: take 3
	Slide 85: Loader customization hooks: take 3
	Slide 86: Loader customization hooks: take 3
	Slide 87: Loader customization hooks: take 3
	Slide 88: Loader customization hooks: take 3
	Slide 89: Loader customization hooks: take 3
	Slide 90: Loader customization hooks
	Slide 91: Loader customization hooks
	Slide 92: Where are we now?
	Slide 93: Where are we now?
	Slide 94: Thanks!

