Bridging CommonJS and ESM in Node.js

Joyee Cheung



About me

Igalia
Sponsored by Bloomberg on my Node.js work
Member of Node.js TSC and V8 committer

@joyeecheung on GitHub



It’s a story about...

e Moving an ecosystem forward by providing a path with non-breaking,

incremental upgrades
O Asking everyone in a huge ecosystem to make breaking changes to migrate is not
effective - Node js tried it for 5 years with little success



It’s a story about...

e Experimenting changes in a heavily
relied upon subsystem with high
compatibility risk

o Node.js uses semver but the priority of
stability make it resembles the Web

o Every change breaks someone’s workflow

o How do we minimize the impact?

CHANGES IN VERSION 10.17:
THE CPU NO LONGER OVERHEATS
WHEN YOU HOLD DOWN SPACESAR.

COMMENTS:
LONGTIME USERY WRIES:

THIS DPPATE [BROKE. MY WORKFLOW!
MY CONTROL KEY 15 HARD ToREACH,

50 I HOWD SPACEBAR INSTERD, AND T
(ONFIGURED EMACS To INTERPRET A
RAPID TEMPERATURE. RISE. As CONTROL.

ADMIN WRITES:
THATS HORRIFYING.

(onGTiEUserY WRITES:

LOOK, MY SETUP WORKS FOR ME.
JUST ADD AN OPTION TO REENABLE
SPACEBAR HERATING.

EVERY CHANGE BREAKS SOMEONES WORKFLOW.




History of ESM in Node.js

Node.js was created in 2008 and added support for the module system proposed as part

of Common]JS in 2009 (CJS)

exports.log = function log() {}
const { log } = require('./logger.js');

In ES2015, JavaScript got a standardized module format — ESM (ECMAScript

Modules)

export function log() {}
import { log } from './logger.js’;

Proposals and initial development of Node.js ESM support started in 2015 but it took a
long time to debate and develop interoperability between the two...



History of ESM (from ES2015) in Node.js

15.3.0
:-.R
13.2.0 14120\
() \‘ backports backports\‘
12.1.0 12.22.0
8.5.0
o
: !
Initial release Unflagged Stable

Mid 2017 Late 2019 Late 2020



History of ESM in Node.js

At the time of stabilization (v15.3.0):

module.exports = class Logger{};
module.exports.log

import
import

function log() {}

Logger from './logger.js';

{ log } from '

./logger.js’;



History of ESM in Node.js

At the time of stabilization (v15.3.0):

require('./logger.js');

import module from 'node:module’;
require = module.createRequire(import.meta.url);
require('./logger.js’');



History of ESM in Node.js

At the time of stabilization (v15.3.0):

import Logger from './logger';
await ('./logger.js');



History of ESM in Node.js

At the time of stabilization (v15.3.0):

export default log() {}

require('./logger.mjs');

('./logger.mjs').then((namespace) { namespace.log() });



Implications of lack of require(esm)

e CJS could not load ESM without coloring the dependency graph async
Majority of the ecosystem still effectively run CJS

e Some providers want to use ESM without breaking users and losing popularity -
they started to invent various workarounds...



Writing ESM != running ESM: Faux-ESM

e Packages, frameworks and tools transpile ESM to CJS - faux ESM
e Don’t always work with real ESM
e Ripple effect

import { foo } from 'external_esm';
export default function handler() { return foo(); }

"use strict";
Object.defineProperty(exports,
exports.default = handler;

'__esModule", { value: true });

const external_esm_1 = require("external_esm");

function handler() { return (O, external_esm_1.foo)(); }



Dual package

e Many packages ship both to support
both consumers: supply ESM to
ESM, CJS to CJS

e Doubles the size of node_modules...



Dual package

e Many packages ship both to support
both consumers: supply ESM to
ESM, CJS to CJS

e Doubles the size of node_modules...

Neutronstar Black hole

HEAVIEST
OBJECTS IN THE
UNIVERSE

node_modules




Dual package

® Dual package hazard

import require
ESM A CJS B >EESIl X Two version of the

same package in the

import same graph!!
import ESM D ESM C grap




Implications of lack of require(esm)

[ e [MEEAES:
- [EE Eaws -

Source: https://github.com/wooorm/npm-esm-vs-cjs/

2022-11-04

2023-02-06

2023-05-29

2023-08-24

2023-11-22

2024-02-20

2024-05-27

2024-08-28

2024-11-27

2025-02-28

2025-05-31




Implications of lack of require(esm)

All-or-nothing breaking change

ESM-onl
/ Y T Reduces popularity in majority
users
Format to

ship > CJS-only — Interop issue with ESM deps
packages \‘
Faux—ESM > Setup overhead
CJS+ESM Dual package hazard

(dual) Increased size



If we have require(esm)...®

ESM-onl . .
e No more interop issues
Format to Enables incremental upgrade
ship > CJS-only
packages

No longer necessary



The myth of “ESM is async, require() is sync”

® Not that many people knew “it can be done”

® Those who did, didn’t pursue it further after initial attempt in 2019

® People involved in ESM implementation/specification knew that in the spec, ESM is only
async when it contains top-level await

® Most people didn’t work on those (e.g. myself), assumed ESM is always async - even the
Node.js documentation said so - and didn’t think about taking a stab at require(esm) at all

require

The CommonlJS module require always treats the files it references as CommonJS.

Using require toload an ES module is not supported because ES modules have asynchronous execution.|Inste
use import() toload an ES module from a CommonlJS module.




ESM without top-level await is synchronous

9. If module.[[HasTLA]] is false, then

a. Assert: capability is not present.

b. Push moduleContext onto the execution context stack; moduleContext is now the running
execution context.

c. Let result be Completion(Evaluation of module.[[ECMAScriptCodel]]).

d. Suspend moduleContext and remove it from the execution context stack.

e. Resume the context that is now on the top of the execution context stack as the running
execution context.

f. If result is an abrupt completion, then

i. Return ? result.
10. Else,
a. Assert: capability is a PromiseCapability Record.
b. Perform AsyncBlockStart(capability, module [[ECMAScriptCodel]l, moduleContext).

https://tc39.es/ecma262/#sec-source-text-module-record-execute-module




ESM without top-level await is synchronous

Confirmed later that this was intentional, also relied on by bundlers

Normative: Synchronous based on a syntax and module graph #61

)a BV Il littledan merged 2 commits into tc39:master from littledan:statically-synchronous (33 on Mar 26, 2019

() Conversation 34 -0- Commits 2 [Fl Checks o Files changed 2

% littledan commented on Mar 19, 2019 Member

This patch is a variant on #49 which determines which module subgraphs
are to be executed synchronously based on syntax (whether the module
contains a top-level await syntactically) and the dependency graph
(whether it imports a module which contains a top-level await,
recursively). This fixed check is designed to be more predictable and
analyzable.



ESM without top-level await is synchronous

This means as a host, Node.js could implement this:

Up to Node,js to make it synchronous

function requireESM(specifier) {
const linkedModule = fetchModuleGraphAndLinkSync(specifier);

1T (linkedModule.hasTopLevelAwaitInGraph()) {
throw new ERR_REQUIRE_ASYNC_MODULE;

}

const promise = linkedModule.evaluate();

assert.strictEqual(getPromiseState(promise), 'fulfilled’);
assert.strictEqual(unwrapPromise(promise), undefined);

return linkedModule.getNamespace();



ESM without top-level await is synchronous

This means as a host, Node.js could implement this:

function requireESM(specifier) {
const linkedModule = fetchModuleGraphAndLinkSync(specifier);

1T (linkedModule.haslopLevelAwaitInGraph()) 1 o
throw new ERR_REQUIRE_ASYNC._MODULE : Check if it can be evaluated synchronously

}

const promise = linkedModule.evaluate();

assert.strictEqual(getPromiseState(promise), 'fulfilled’);
assert.strictEqual(unwrapPromise(promise), undefined);

return linkedModule.getNamespace();



ESM without top-level await is synchronous

This means as a host, Node.js could implement this:

function requireESM(specifier) {
const linkedModule = fetchModuleGraphAndLinkSync(specifier);

if (linkedModule.hasTopLevelAwaitInGraph()) {
throw new ERR_REQUIRE_ASYNC_MODULE;

} No need to wait for anything if there’s no TLA

const promise = linkedModule.evaluate();

assert.strictEqual(getPromiseState(promise), 'fulfilled’);
assert.strictEqual(unwrapPromise(promise), undefined);

return linkedModule.getNamespace();




Synchronous-only ESM on the Web

® ServiceWorkers disallows asynchronous module graphs (with top-level await)
® This saved us from having to add an API to V8 for that hasTopLevelAwaitInGraph() check
the peusdocode before - it was already added for Chrome to implement similar semantics for

ServiceWorkers in 2020

9. If scriptis null or Is Async Module with script's record, scripfs base URL, and « » is true, then:

1. Invoke Reject Job Promise with job and TypeError.

Note: This will do nothing if Reject Job Promise was previously invoked with "SecurityError"
DOMException.

2. If newestWorker is null, then remove reqistration map|[(registration’s storage key, serialized
scopeURL)].

3. Invoke Finish Job with job and abort these steps.




Restarting require(esm) in Node.js

In late 2023, I learned about the semantics when reading V8 code, discussed with
other contributors who knew more about ESM in Node.js

ynction requireFSM(specifier) {
const linkedModule = fetchModuleGraphAndLinkSync(specifier);
1T (llnkedModule.nhaslopLevelAwaitlInGraph()) X

throw new ERR_REQUIRE_ASYNC_MODULE : The ESM loader only had asynchronous version
) of this back then, and it’s ~3K lines of code that
const promise = linkedModule.evaluate(); I had barely read before ®

assert.strictEqual(getPromiseState(promise), 'fulfilled’);
assert.strictEqual(unwrapPromise(promise), undefined);

return linkedModule.getNamespace();



Restarting require(esm) in Node.js

e Wait for others who were more familiar with the ESM loader to refactor it
A few months later, working on compile cache, ended up refactoring the
compilation part of the ESM loader to make the compilation go through the
cache, then ended up reading the whole thing...

src: use dedicated routine to compile function for builtin CJS loader

ISV nodejs-github-bot merged 1 commit into nodejs:main from joyeecheung:cjs—compile (5Jon Mar 11

L) Conversation 12 -0- Commits 1 [Fl Checks 29 Files changed 8

@f‘i joyeecheung commented on Mar 8 - edited ~
Aﬂa‘:’ %

Member = °°*

So that we can use it to handle code caching in a central place.

Needed by #47472, split out from #51977



Restarting require(esm) in Node.js

o ¥ .instead of refactoring that ~3K lines, maybe it’s easier to just add new
lines to implement a synchronous and trimmed-down ESM loading path for

require()
® Could already see it in my head
® Lines added are easier to backport to older LTS than lines changed

-~

® (ot support from Bloomberg to work part-time on this



Restarting require(esm) in Node.js

* Reaction was very positive

* Some edges needed more work, but we all agreed that it can be a follow-up
whilst the feature is behind a flag (nothing comes out perfect at the first time

anyway)

module: support require()ing synchronous ESM graphs #5197/

)§ 4o 1l joyeecheung wants to merge O commits into nodejs:main from joyeecheung:require-esm &I
* Ignore this GitHub diff mess-up @ commit was 5f7fad2

0 Conversation 108 -0 Commits 0 [Fl Checks o Files changed 0

66‘2 joyeecheung commented on Mar 5 - edited ~ Member

)

%

%
@
Summary

This patch adds require() support for synchronous ESM graphs under
the flag —-experimental-require-module




Stabilization & Backporting

Released to v22, unflagged in v23
Many conventions and workarounds already existed in the ecosystem to
work around the interoperability issues

e Working with package maintainers, test the ecosystem and try not to

break existing code / step on their toes



Stabilization & Backporting

Oct 2024 Jan 2025 Apr 2025 Jul 2025 Oct 2025 Jan 2026 Apr 2026 Jul 2026 Oct 2026

If require(esm) is semver-major, the last LTS that doesn’t support it by default
would be 22 or even 24 — package authors would need to wait until their EOL

(2027 or 2029) to start transition

Node.js 22 . ACTIVE
Node.js 23 CURRENT |




Stabilization & Backporting

Oct 2024 Jan 2025 Apr 2025 Jul 2025 Oct 2025 Jan 2026 Apr 2026 Jul 2026 Oct 2026

Main

Node.js 18

Node.js 20 .
Node.js 22 .

If it’s semver-minor, it can be backported to 22 and 20, so package authors can

fully rely on it and start the transition from May 2025




Does the lack of top-level await matter?

1 t failures = [];
To understand the impact on the const Taiid
const passed = [];

ecosystem, I wrote a few scripts to for (let i = @; i < packages.length; ++i) {

analyze the high-impact packages const p = packages[il;

from wooorm/npm-esm-vs-cjs Eny:
require(p);

passed.push(p)
} catch(e) {

failures.push({p, e});
}

https://github.com/joyeecheung/test-require-esm


https://github.com/wooorm/npm-esm-vs-cjs/tree/main

Does the lack of top-level await matter?

Format of 5000 npm top high-impact packages (Sept 2024)

dual (verified)

Out of the top 5000 high-
impact packages on npm (Sept
2024)

466 dual ESM and 526 faux ESM
packages already don’t use top-level
await and can drop CJS distribution
without breaking compatibility



Does the lack of top-level await matter?

Breaking down the top 559 ESM-
Types of top 559 ESM packages only packages from top 5000

ESM with TLA

® Only 6 with top-level await

® 3 were converted from
fs.somethingSync() to await
fs.something()

® ) can use
process.getBuiltinModule( ‘n
ode :something’) to avoid using

ESM without TLA TLA for feature detection

® Only 1 might really need TLA
(minified, can’t tell)




Does the lack of top-level await matter?

e Top-level await is mostly intended for entry points and scripts

e [t’s actually rare in packages meant to be loaded by a different code base

® require() works for >99% of the high-impact packages. For the <1%, use
dynamic import().

o require(esm) do not break the usual way of loading these high-impact
packages



A bunch of small features to smooth the transition..

e Let’s check out some representatives for:
® Faux ESM -> ESM
® CJS->ESM
® Dual > ESM



Faux ESM to native ESM transition: default exports handling

Unlike CJS, ESM makes the default export a property named “default” on the module
namespace object, parallel to other named exports

module.exports = class Logger{};
exports.log = function log() {};

const Logger = require('log');
Logger.log;

console.log(require('log'));

export default class Logger {};
export function log() { }

import Logger from 'log’;
Logger.log;

console.log(await import(‘log'));



Faux ESM to native ESM transition: default exports handling

Unlike CJS, ESM makes the default export a property named “default” on the module
namespace object, parallel to other named exports

module.exports = class Logger{};
exports.log = function log() {};

const Logger = require('log');
Logger.log;

console.log(require('log'));

export default class Logger {};
export function log() { }

import Logger from 'log’;
Logger.log;

console.log(await import(‘log'));




Faux ESM to native ESM transition: default exports handling

Bundlers and transpilers have already developed the __esModule marker to work

around the multiplexing

// Original ESM module code
export default class Logger{};
export function log() { }.

// Original ESM consumer code
import Logger from 'log’;
const logger = new Logger;

// Transpiled faux ESM module code
exports.default = class Logger{};
exports.log = function log() {}

exports.__esModule = true

// Transpiled faux ESM consumer code
const _mod = require('log’);
//{ default: Logger, log: log, __esModule: true }

const Logger = _mod.__esModule ? _mod.default : _mod;

const logger = new Logger;




Faux ESM to native ESM transition: default exports handling

When a faux ESM package is converted to native ESM, but consumer code is still transpiled,
faux-ESM -> native ESM can be a breaking change if default exports are used

export default class Logger{};

export function log() { }

import Logger from 'log’;

const logger =

new Logger;

const _mod =

require('log’);

const Logger

_mod.__esModule ? _mod.default :

mod ;

const logger

new Logger;




Faux ESM to native ESM transition: default exports handling

Solution / Node.js adopts the bundler convention and add __esModule, so that
transpiled code recognize default exports in native ESM loaded by require()

export default class Logger{};
export function log() { }

import Logger from 'log’; const _mod = require('log’);
const logger = new Logger;

_mod.__esModule ? _mod.default : _mod;
new Logger; v

const Logger
const logger



Faux ESM to native ESM transition: default exports handling

e However..ESM namespace is not mutable - cannot just add a new __esModule property!
e Multiple ways to implement this, brainstormed with folks from different projects...

o Object.create(namespace, { __esModule: true })

o Copy over property descriptors to a new object and add __esModule

o A proxy backed by the namespace that intercepts __esModule

o A SourceTextModule that re-exports * from original module and also exports

__esModule

export * from 'original’;
export { default } from 'original’;
export const __esModule = true;



Faux ESM to native ESM transition: default exports handling

Performance impact on module loading are all minimal, but impact on export access vary greatly

Benchmark 1: ./node_main —-experimental-require-module ../test-require-esm/load.cjs
Time (mean % g): 674.4 ms = 12.6 ms [User: 754.7 ms, System: 128.4 ms]
Range (min .. max): 657.8 ms .. 693.7 ms 10 runs

Benchmark 2: ./node_proto —--experimental-require-module ../test-require-esm/load.cjs
Time (mean = 0o): 685.3 ms =+ 21.8 ms [User: 773.4 ms, System: 129.5 ms]
Range (min .. max): 661.6 ms .. 729.1 ms 10 runs

Benchmark 3: ./node_desc —--experimental-require-module ../test-require-esm/load.cjs
Time (mean = 0o): 683.9 ms =+ 11.9 ms [User: 781.1 ms, System: 119.2 ms]
Range (min .. max): 665.1 ms .. 698.9 ms 10 runs

Benchmark 4: ./node_stm ——experimental-require-module ../test-require-esm/load.cjs
Time (mean = o): 683.7 ms = 11.5 ms [User: 779.8 ms, System: 116.8 ms]
Range (min .. max): 669.1 ms .. 705.8 ms 10 runs

Benchmark 5: ./node_proxy --experimental-require-module ../test-require-esm/load.cjs
Time (mean % 0): 671.3 ms =+ 10.3 ms [User: 745.8 ms, System: 131.7 ms]
Range (min .. max): 656.1 ms .. 684.9 ms 10 runs




Faux ESM to native ESM transition: default exports handling

$ node-benchmark-compare esm-proto.csv

confidence improvement accuracy () (%x)
esm/require-esm.js n=1000 exports='default' type='access' koK -7.46 % +1.41%
esm/require-esm.js n=1000 exports='default' type='all' koK -5.49 ¢
esm/require-esm.js n=1000 exports='default' type='load' *okok -5.44
esm/require-esm.js n=1000 exports='named' type='access' koK -13.59
esm/require-esm.js n=1000 exports='named' type='all' *okok -6.73
esm/require-esm.js n=1000 exports='named' type='load' koK -6.82

[

.87%
.01%
.87%
.99%
.11%
.06%

N

e Suggested by Bun

N
N

N

e Breaks enumerability of

[N
N

+ F H K K
[N

N
N

K K K+ K K+ K

+
N
N

the returned objects

$ node-benchmark-compare esm-proxy.csv

confidence improvement accuracy (%)
esm/require-esm.js n=1000 exports='default' type='access' kK -79.45 +0.84%
esm/require-esm.js n=1000 exports='default' type='all' koK -3.00 +1.45%
esm/require-esm.js n=1000 exports='default' type='load' *okok -2.18 +1.17%
esm/require-esm.js n=1000 exports='named' type='access' *kok -84.10 +1.14%
esm/require-esm.js n=1000 exports='named' type='all' *okok -3.49
esm/require-esm.js n=1000 exports='named' type='load' koK -3.81

[N
[N

(R LA
SN

[N
N

K K K+ K K K

N

H K K H K H

[N

$ node-benchmark-compare esm-desc.csv

confidence improvement accuracy (x) (k% )
esm/require-esm.js n=1000 exports='default' type='access' koK -76.63 % +0.83% +1.46%
esm/require-esm.js n=1000 exports='default' type='all' *okk -8.88 +1.03% +1.78%
esm/require-esm.js n=1000 exports='default' type='load' koK -7.77 +1.37% +2.38%
esm/require-esm.js n=1000 exports='named' type='access' koK -81.16 +1.15% +2.06%
esm/require—-esm.js n=1000 exports='named' type='all' *okok -11.14 +1.26% +2.17%
esm/require-esm.js n=1000 exports='named' type='load' koK -9.58 +1.46% +2.53%

HOH R OH KK
PRPPR

[N

e Exported names are still

$ node-benchmark-compare esm-stm.csv
confidence improvement accuracy (x) (k%) (k%)

esm/require-esm.js n=1000 exports='default' type='access' koK -16.69 % +2.27% +3.02% +3.94% EEIlllIllfflfélt)lff

esm/require-esm.js n=1000 exports='default' type='all' *kk -21.00 +1.07% *1.43% +1.86%

esm/require-esm.js n=1000 exports='default' type='load' Kok -21.62 +1.16% +1.54% +2.02% ) Looks Very Slmllar to the

esm/require-esm.js n=1000 exports='named' type='access' *okok -14.63 +1.42% +£1.90% *2.48%

esm/require-esm.js n=1000 exports='named' type='all' *okok -22.57 +1.15% +1. +2.00%

-

1 o e
esm/require-esm.js n=1000 exports='named' type='load' koK -23.04 +1101:3% =1/ +1.95% ()Ilg;lIlEll I121I11€381321(:(3




Faux ESM to native ESM transition: default exports handling

Optimizing SourceTextModule facade approach
e (Caching facade module compilation — module record is constant, just needs relinking
e Only add it when the original module contains default export
e Micro-optimizations

confidence improvement accuracy (%) (%x) d; )
esm/require—esm.j exports='default' type='access' sk .57 % +2.44% 2 26% * oo
esm/require—-esm.j exports='default' type='all' kK A .71% .95% +1.25%
.61% .81% +1.05%
. 75% .33% +3.03%
.52% .69% +0.90%
. 45% .60% +0.78%

(s
S W

(&)

esm/require—esm.j exports='default' type='load' *oksk .81
esm/require-esm.j exports='named' type='access' *oksk .39
esm/require—esm.j exports='named' type='all' oKk .36
esm/require—esm.j exports='named' type='load' sk

N

H + + H+ K
(]

(s
(s

+H + K+ + H
[N

(&)
I+
(&)




CJS -> ESM transition: default exports handling (again)

The default exports multiplexing problem happens again to packages that are originally
authored in CJS, and want to migrate to ESM

module.exports = Logger {};
module.exports.log = log() {}

import { log } from 'log’';
import Logger from 'log’;

{ log } = require(‘log');
Logger = require(‘log');



CJS -> ESM transition: default exports handling (again)

The default exports multiplexing problem happens again to packages that are originally
authored in CJS, and want to migrate to ESM

export default class Logger{};
export function log() { }
Logger.log = log;

import { log } from 'log';
import Logger from 'log’;

const { log } = require('log');

const Logger = require('log');
const Logger = require('log').default;




CJS -> ESM transition: default exports handling (again)

® Not a problem if module doesn’t have default exports

® ~36% of the high-impact ESM packages have only a default export
® -~16% have both named and default exports
® ~48% have no default exports

® When they do, Node,js needs a hint from package authors to customize what should be
returned.

® (Can’t unwrap default based on __esModule because existing faux-ESM code would need
that to be left to them.



CJS -> ESM transition: default exports handling (again)

Solution Z Use another marker, “module.exports”, which will be written by human
instead of being generated

export default class Logger{};
export function log() { }
Logger.log = log;

export { Logger as 'module.exports' };

const { log } = require('log');
const Logger = require('log');




Dual -> ESM transition: prioritize ESM on newer Node.js version

Common shipping pattern for dual packages: CJS-first on Node.js, ESM in other environments
{

"type": "module”,

"exports": {

II: {
"node": "./dist/index.cjs”,
"default": "./index.js"

}

import require
' g CJ)SB g CJ)SC Always use the CJS
/ version on Nodejs,
import ESM D ESM C ignore the ESM one

import



Dual -> ESM transition: prioritize ESM on newer Node.js version

require(esm) allows dual packages to go ESM-only and reduce the duplication.

{
"type": "module",

"exports": {

e ® What if they still want to keep the CJS
} distribution for older versions of Node.js
; for some time?
IMpOKT require
Now they can always
\ use the ESM version on
ESM C Nodejs!

import ESM D

import



Dual -> ESM transition: prioritize ESM on newer Node.js version

Bundlers already have a convention “module” for require() to pick up ESM, which they use
to transpile and produce cleaner code. Can we reuse it to avoid “one more condition”? @

{
"type": "module",

"exports": {

II: {
"node" : {
"module”: "./index.js",
"default": "./dist/index.cjs"
b
"default": "./index.js”



Dual -> ESM transition: prioritize ESM on newer Node.js version

® Implemented it, tested it on high impact packages...unfortunately, bundlers also have
resolution rules that differ from Node.js ESM for ESM bundles

® Existing high-impact packages using the “module” condition (including many high-impact
packages) are also expecting these non-Node.js resolution rules to work in their ESM code

{
"type": "module",
"exports": {
AR ‘ . ‘ Breaks @aws-sdk/core, @sentry/core, etc. o
"module”: "./dist-es/index.js",
}
}
}

export * from "./submodules/client/index";
export * from "./submodules/httpAuthSchemes/index";
export * from "./submodules/protocols/index";



Dual -> ESM transition: prioritize ESM on newer Node.js version

Solution /7 Adding one more “module-sync” condition for dual packages that still need
to support EOL Node.js versions (temporarily, hopefully)

"node" : {
"module-sync": "./index.js",
"module”: "./index.js",
"default": "./index.js”

¥

"default": "./index.js"



Dual -> ESM transition: prioritize ESM on newer Node.js version

Package authors can drop all the conditions when require(esm) is available on all
Node.js versions they support

{

"type": "module”,

"exports": {
" "./index.js”
}
b



Backporting

e Developed on the main branch during v22-v23, unflagged in v23
e Backporting to v22 was relatively easy
e Backporting to v20 was.challenging

Node.js 22 . ACTIVE
Node.js 23 CURRENT




Backporting

e Tried “backporting all related module loader commits” to v20: 119 in total, some
semver-major ones difficult to be made non-breaking ®

e “Only backport the essential commits”: took some time to triage 33 out of 119 ¥

e Skipping commits means a lot of modification needs to be made..

e Wrote a script to “diff the diffs” to make sure commits adapted to v20.x do not
have unintentional behavior differences and I did not leave out important bits

https://gist.github.com/joyeecheung/7889b89265dc66a6889f7f7167efb89f



https://gist.github.com/joyeecheung/7889b89265dc66a6889f7f7167efb89f

iffs >
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

Backporting

0002-module-detect-ESM-syntax-by-trying-to-recompile-as-SourceTextModule....

xkx 187,205 sokkck

+ o+ + o+ o+

if (that->SetPrivate context,
realm->isolate_data()—>host_defined_option_symbol(),

module = Module::CreateSyntheticModule(isolate, url, export_names,
SyntheticModuleEvaluationStepsCallback);

} else

ScriptCompiler: :CachedDatax cached_data = nullptr;

173 14—

// When we are compiling for the default loader, this will be
// std::nullopt, and CompileSourceTextModule() should use
// on-disk cache (not present on v20.x).
std::optional<v8::ScriptCompiler::CachedDatax> user_cached_data; |
if (id_symbol != I
realm—>isolate_data()->source_text_module_default_hdo()) { 1
user_cached_data = nullptr; 1
} [ |
if (args[5]->IsArrayBufferView()) {
CHECK(!can_use_builtin_cache); // We don't use this option internally.l
Local<ArrayBufferView> cached_data_buf = args[5].As<ArrayBufferView>()::
uint8_tx data = [
.
|

if (that->SetPrivate context,
realm—>isolate_data()->host_defined_option_symbol(),

module = Module::CreateSyntheticModule(
isolate, url, span, SyntheticModuleEvaluationStepsCallback);

} else

ScriptCompiler: :CachedData* cached_data = nullptr;

P Cot e L e e £ AR

¥ summary.md

il

w

N oy i»n

(te}

10

11
12

14

-~ https://github.com/nodejs/node/pull/52093: Adapted to the lack of
reader rewrite in v20.x.

~ https://github.com/nodejs/node/pull/52413: kdapted to the absence
cache support in the C++ layer, borrowing some lines from https://g:
nodejs/node/pull/52535

- https://github.com/nodejs/node/pull/52058: Do not freeze "module.
dependencySpecifiers® because it's semver-major. Added a " FromV8Arrz:
polyfill for v2@0.x which does not have the new V8 API.

- https://github.com/nodejs/node/pull/52047: "pkg?.data.type’ —> ’pl
because we are not backporting package reader rewriting

- https://github.com/nodejs/node/pull/52868: no modifications

— https://github.com/nodejs/node/pull/53050: no modifications

- https://github.com/nodejs/node/pull/51711: Changed location of ' cc
in test harness

— https://github.com/nodejs/node/pull/52658: Adapted to the lack of
naming changes

- https://github.com/nodejs/node/pull/53573: No need to take care of
cache since we are not backporting it to v20

- https://github.com/nodejs/node/pull/52166: Adapted to the lack of
naming changes. Also v8::ScriptOrigin takes an isolate on v20.

-~ https://github.com/nodejs/node/pull/53872: no modifications

- https://github.com/nodejs/node/pull/53619: process.env.TEST_PARALI
in tests is not backported to v20. Doesn't hurt to check it though ¢
the python test runner in v20.

- https://github.com/nodejs/node/pull/54045: Work around absense of
tripping, taking a bit of the typeless package.json warning helper
https://github.com/nodejs/node/pull/53725

- https://github.com/nodejs/node/pull/54868: Removed TypeScript tes

nnt nn WA v




Status of require(esm)

Release candidate
Available without flags in v24, v22, v20 (backported)
Stabilization soon after it’s more battle tested

Many popular packages have started shipping/planning to ship ESM-only
targeting v20.x and above after vl8.x EOL in April 2025

o vite

babel

yargs

graphql

various eslint plugins..
unjs packages..

o O O O O O

various tinylibs..



What’s next for ESM in Node.js?

e Consolidate the internal loader paths to eliminate races from async
linking vs synchronous linking
o Mostly fixed for user land, theoretically still possible
e Stabilize & complete in-thread synchronous loader hooks
o Reduce (widespread) ecosystem dependency on CJS loader internals/monkey-
patching of the CJS loader itself
o Improve instrumentation
e Improve ESM performance
o Even require(esm) was 1.2x faster than import esm.
o (CJS loading can be 2-2.5x faster than ESM
o https://gist.github.com/bengl/c6d3beae27be0d76bce8312881ae8f2d



https://gist.github.com/bengl/c6d3beae27be0d76bce8312881ae8f2d

Thanks



