
Decoding Kernel 
Callstacks with MCP Tools

Gavin Guo
1 November 2025, Shenzhen, China

Wechat Slide



Agenda
● The Problem: Kernel Debugging Challenges

● AI Agent for Kernel Stack Analyzer

○ What’s MCP (Model Context Protocol)?

○ What’s An Embedding Model?

○ Git Log Vector Database Construction

○ The Kernel Error Classifier

○ The General Kernel Calltrace Analyzer AI Agent

○ The Final Analysis from AI Agents

● Current Upstream Trend

● Future Directions



The Problem: Kernel Debugging Challenges



The Problem: Kernel Debugging Challenges

BUG: unable to handle page fault for address: ffffea60001db008
CPU: 0 UID: 0 PID: 2199114 Comm: tee Not tainted 6.14.0+ #4 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:split_huge_pmd_locked+0x3b5/0x2b60
Call Trace:
<TASK>
try_to_migrate_one+0x28c/0x3730
rmap_walk_anon+0x4f6/0x770
unmap_folio+0x196/0x1f0
split_huge_page_to_list_to_order+0x9f6/0x1560
deferred_split_scan+0xac5/0x12a0
shrinker_debugfs_scan_write+0x376/0x470
full_proxy_write+0x15c/0x220
vfs_write+0x2fc/0xcb0
ksys_write+0x146/0x250
do_syscall_64+0x6a/0x120
entry_SYSCALL_64_after_hwframe+0x76/0x7e

How to debug the 
kernel page fault?

[PATCH v3] mm/huge_memory: fix dereferencing invalid pmd migration entry

CVE 2025-37958

https://lore.kernel.org/all/20250421113536.3682201-1-gavinguo@igalia.com/T/#u
https://www.cve.org/CVERecord/?id=CVE-2025-37958


The Problem: Kernel Debugging Challenges
● Why This Matters?

○ Manual callstack analysis is time-consuming and tedious

■ Engineers spend hours/days tracing through thousands of lines of code

○ Repetitive work correlating RIP addresses with root causes

○ Impact on stable kernel maintenance and upstream development



How to Debug the kernel calltrace?

● Use the addr2line to find the source code with given address

● Looking into the function to figure out what happen

● Search git log to find existing fixes

● Could we use AI to have a preliminary analysis?



Kernel Error Analysis AI Agents Design



What’s an AI agent?
● Anthropic: “AI agents are programs where LLM outputs control the workflow.”

● Anthropic: "Building Effective Agents"

● Three components of an AI agent

○ LLM

○ Memory

○ Tools

https://www.anthropic.com/engineering/building-effective-agents


Kernel Error Analysis AI Agents Design
● Objective:

○ Develop an AI agent framework for kernel error analysis, specifically to assist in 
diagnosing and resolving issues within kernel calltraces. Finally, the AI agent will try to 
find any existing fix in the git log vector database.

● User Input: 
○ Users provide kernel calltraces as input to chatbox to walk through the workflow.

● Error Categorization: 
○ A central AI agent classifies the calltrace and routes it to specialized sub-agents for 

in-depth processing.
● Illustrative Examples: 

○ For demonstration purposes, the design incorporates two sample agents:
■ A general kernel error analyzer agent for general issue handling.
■ A deadlock kernel error analyzer agent focused on detecting and resolving 

deadlock scenarios.



Kernel Error Analysis AI Agents Design

INPUT:

kernel error 

calltrace

OUTPUT:

Error 

Resolution 

Summary

N8N agentic workflow

calltrace
reformat

1 2

3

4

5

6

8 7

https://www.google.com/aclk?sa=L&pf=1&ai=DChsSEwjIo8Sh5a-QAxWK20wCHYcdAQUYACICCAEQARoCdG0&co=1&ase=2&gclid=CjwKCAjwmNLHBhA4EiwA3ts3maPCQSxqSSm41xbY5M5VDnZBjm8eXaZ1eY1_WLcXNORR4zQAdOE5zRoCfB0QAvD_BwE&cid=CAASsAHkaIF8mQm2TZEjFTuQVrefywlbSmRtrc3fpvELayxv1HCAtZrrBYOv1xU0nSKointCJfizBkGc4AL0lKTgYwTDAvRq5OvcSGnDGhH5Qq5Eo4mpJnofIVPVvE9bA2moRwp5MlRdiu3bWZ9TlxwckUpwrUBqrypgrYl7PqMHt9f2FePSsm9QVsmKqxsBPcXRLvB4Hrb0SP680iAn0T8pbWHU3IECu5ZT5S7Zm0fojSmpGA&cce=2&category=acrcp_v1_32&sig=AOD64_17p-GrSsY4QSMD8m6MyicUC6uSuw&q&nis=6&ch=1&adurl=https://n8n.io/?ps_partner_key%3DNGExZmJjMDZiOTYx%26ps_xid%3DmSBxu4zkQlyU1o%26gsxid%3DmSBxu4zkQlyU1o%26gspk%3DNGExZmJjMDZiOTYx%26gad_source%3D1%26gad_campaignid%3D22842062046%26gbraid%3D0AAAAA9x3IYFQGZgugC5S7yfhlLnuR00jQ%26gclid%3DCjwKCAjwmNLHBhA4EiwA3ts3maPCQSxqSSm41xbY5M5VDnZBjm8eXaZ1eY1_WLcXNORR4zQAdOE5zRoCfB0QAvD_BwE&ved=2ahUKEwjKoL6h5a-QAxXllK8BHYi-DYEQ0Qx6BAgWEAE


What’s MCP (Model Context Protocol)?



What’s MCP (Model Context Protocol)?
● What is MCP?

○ Protocol for connecting AI models with external tools and data sources

○ Bridge between traditional system tools and AI-assisted workflows

● Why MCP for Kernel Debugging?

○ Structured way to provide kernel context–such as source code, and git log–to LLMs

○ Standardized interface to leverage AI-powered debugging tools

○ See Github: Kernel Stack Analyzer MCP Tool

● A temporary Kernel Callstack MCP server to experiment during CLK

○ http://clk.gavinguo.cc/mcp 

https://github.com/bboymimi/ai-kernel/blob/master/MCP_TOOL_README.md
http://clk.gavinguo.cc/mcp


kudos to http://www.icangyu.com/uploadfile/2018/0428/20180428121655556.jpg

http://www.icangyu.com/uploadfile/2018/0428/20180428121655556.jpg


https://norahsakal.com/blog/mcp-vs-api-model-context-protocol-explained/

https://norahsakal.com/blog/mcp-vs-api-model-context-protocol-explained/


kernel 
callstack

thinking 
which mcp 

tool to use?

addr2line/c
scope -dL

retrieve the 
source code 
chain

1
2

3

4

5

Wrap up the source code 
with the given prompt 
for LLM to continue the 
analysis

7

thinking how to 
resolve the question 

based on the 
provided prompt

Solution

6

Re-format the callstack 
based on the tool 
description and send to 
MCP server

kernel 
source

cscope.out

kernel stack 
analyzer MCP 

server

LLM

The Kernel Stack Analyzer MCP Tool



What’s an Embedding Model?



What’s An Embedding Model?
Embedding aims to represent the words in the dense vector, while making sure 
the similar words close to each other in the embedding vector space.

 

Dog   Cat
Tea Milk

Sugar
Mom

Dad

Cat Dad 
Dog Milk 
Mom 
Sugar Tea

Embedding 
Model

Distance(Cat, Dog) < Distance(Cat, Dad)

Cat and Dog are more similar than Cat and Dad

Cat[1, 1, 5]
Dog[1, 2, 4.8]
Tea[4, 1, 3]
Milk[5, 0.8, 2.7]
Sugar[4.2, 2, 2]
Mom[1, 4, 3]
Dad[2, 5, 3]

x

y

z



Chat with your Git logs

Document
(GIT logs)

Chunk 0

Chunk 1

Chunk n-2

Chunk n-1

Embedding 
Model

…

Vector database

Vector 0
Vector 1

Vector n-2
Vector n-1

…Chunk x -> Vector x

Split the document into 
chunks with each size of 
k bytes.

Question?
Question 
Vector

Top k (=3)
Similarity 
Search

Vector A
Vector B
Vector C

LLM

Summarize the 
three returned 
vectors’ 
corresponding 
chunks with the 
given question

Final Answer

LLM Memory
Vector database



Git Log Vector Database Construction



Git Log Vector Database Construction

● Capture Relevant Git Commits: 

● Gather all commits associated with the project or feature.

● Reformat to Markdown (.md): 

● Convert commit data into a structured Markdown

file for easy processing.

● Slice into Chunks: 

● Divide the .md file using '---' separators to create 

manageable sections.

● Generate Embeddings: 

● Feed each chunk into an embedding model to 

produce vector representations.

● Store in Vector Database: 

● Save the generated vectors to a vector DB for efficient retrieval and querying.



Git Log Vector Database (Commit template)
--- 
## Commit 17
### Metadata
- **Commit Hash:** `b960818d51b3...` 
- **Author:** Gavin Guo <gavinguo@igalia.com>
- **Date:** Fri Apr 25 18:38:59 2025 +0800
- **Subject:** mm/huge_memory: remove useless folio pointers passing

### Commit Message 
[Commit message]
### Diff
```diff
<Code Block>
```
### Full Content
<Complete Git show content>
--- 

This is an example of reformated commit 
message, generated from the script, 
used to create a vector by embeddings.

The characters ‘---’ is used to separate 
different commits.

https://gavinguo.cc/2025-clk/huge_memory_patches_enhanced.md
https://gavinguo.cc/2025-clk/huge_memory_patches_enhanced.md
https://gavinguo.cc/2025-clk/extract_git_patches_enhanced.py


The Kernel Error Classifier



The Kernel Error Classifier
● Reformat detected kernel calltraces to ensure correct analysis by the MCP tool. 
● Error Classification Paths

a. Deadlock Debugger: The classifier analyze the log to determine if it indicates a 
deadlock issue; if so, triage to this specialized path for debugging.

b. General Kernel Calltrace Analyzer: Default path for inputs, providing broad analysis 
of the calltrace to identify root causes.

Deadlock
Debugger

General 
Kernel 
Calltrace 
Analyzer

Reformat Prompt

Classifier Prompt

INPUT:

kernel error 

calltrace

https://gavinguo.cc/2025-clk/calltrace-reformat-prompt.txt
https://gavinguo.cc/2025-clk/kernel-error-classifier-prompt.txt


The Kernel Error Classifier

BUG: unable to handle page fault for address: ffffea60001db008
    CPU: 0 UID: 0 PID: 2199114 Comm: tee Not tainted 6.14.0+ #4 
NONE
    Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 
1.16.3-debian-1.16.3-2 04/01/2014
    RIP: 0010:split_huge_pmd_locked+0x3b5/0x2b60
    Call Trace:
    <TASK>
    try_to_migrate_one+0x28c/0x3730
    rmap_walk_anon+0x4f6/0x770
    unmap_folio+0x196/0x1f0
    split_huge_page_to_list_to_order+0x9f6/0x1560
    deferred_split_scan+0xac5/0x12a0
    shrinker_debugfs_scan_write+0x376/0x470
    full_proxy_write+0x15c/0x220
    vfs_write+0x2fc/0xcb0
    ksys_write+0x146/0x250
    do_syscall_64+0x6a/0x120
    entry_SYSCALL_64_after_hwframe+0x76/0x7e

BUG: unable to handle page fault for address: ffffea60001db008
    CPU: 0 UID: 0 PID: 2199114 Comm: tee Not tainted 6.14.0+ #4 
NONE
    Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 
1.16.3-debian-1.16.3-2 04/01/2014
    RIP: 0010:split_huge_pmd_locked+0x3b5/0x2b60
    Call Trace:
    <TASK>
    [1234.123][ T1] try_to_migrate_one+0x28c/0x3730
    [1234.123][ T1] rmap_walk_anon+0x4f6/0x770
    [1234.123][ T1] unmap_folio+0x196/0x1f0
    [1234.123][ T1] split_huge_page_to_list_to_order+0x9f6/0x1560
    [1234.123][ T1] deferred_split_scan+0xac5/0x12a0
    [1234.123][ T1] shrinker_debugfs_scan_write+0x376/0x470
    [1234.123][ T1] full_proxy_write+0x15c/0x220
    [1234.123][ T1] vfs_write+0x2fc/0xcb0
    [1234.123][ T1] ksys_write+0x146/0x250
    [1234.123][ T1] do_syscall_64+0x6a/0x120
    [1234.123][ T1] entry_SYSCALL_64_after_hwframe+0x76/0x7e

INPUT OUTPUT

Calltrace Reformat



The General Kernel Calltrace Analyzer AI Agent



The General Kernel Calltrace Analyzer AI Agent

● Callstack Analysis: 
● AI agent reads and analyzes the callstack 

based on user-provided prompts.
● Calltrace Identification: 

● AI agent detects the calltrace and invokes
the MCP tool to fetch detailed source code
information.

● History Preservation:
● No history is stored in memory.

● Fix Retrieval: 
● AI agent queries the Git log vector database

to identify and suggest potential fixes.

General Kernel Calltrace Analyzer Prompt

https://gavinguo.cc/2025-clk/general-kernel-calltrace-analyzer-prompt.txt


The General Kernel Calltrace Analyzer AI Agent
● Query Callstack MCP

● LLM identifies the calltrace and invokes MCP

tool to retrieve required source code.

● Please read MCP response for complete 

data.

● Query Git Log Vector DB

● LLM prepares the best key words to query

vector DB for best possible fixes retrieval.

● Vector DB will reply with four most related

fixes. Vector DB response

General Kernel Calltrace Analyzer Prompt

https://gavinguo.cc/2025-clk/mcp-response.txt
https://gavinguo.cc/2025-clk/vector-db-query-response.txt
https://gavinguo.cc/2025-clk/general-kernel-calltrace-analyzer-prompt.txt


The Final Analysis from AI Agents



● Please see detailed analysis from the AI agent in final analysis

● 1. Issue Identification and reformat processing

●

● 2. MCP Tool Invocation

● The agent invokes the Kernel Callstack Analyzer MCP Tool to normalize the raw callstack, which 

pinpoints the faulting function as split_huge_pmd_locked.

“I found 1 kernel calltrace in the log you gave. (The single BUG/pf report that starts with 

"BUG: unable to handle page fault..." and the following Call Trace.)”

The Final Analysis From the AI Agent

AI Agent Analysis

https://gavinguo.cc/2025-clk/final-report.txt


The Final Analysis From the AI Agent
● 3. Vector DB Search & Knowledge Retrieval

“Relevant upstream fix(s) found (from the vector store)

- Commit: be6e843fc51a584672dfd9c4a6a24c8cb81d5fb7

  - Title: mm/huge_memory: fix dereferencing invalid pmd migration entry

  - Summary: Detect PMD migration entries and avoid applying pmd_folio()/pmd_folio-based 
equality checks on migration entries. The patch adds or uses an is_pmd_migration_entry() check 
so that pmd_folio() is not used on migration entries and an early return avoids dereferencing a 
migration entry.

Why the commit is the plausible fix

- The crash is precisely caused by incorrectly treating a PMD migration entry as a normal 
PMD/folio and dereferencing it. The commit directly addresses that: detect migration entries 
and avoid pmd_folio-based dereferences when the PMD is a migration entry. The stack trace and 
code location match the commit’s described scenario.”

AI Agent Analysis



The Final Analysis From the AI Agent
● 4. Bug Comprehension

“- The problematic area (from the MCP-supplied source) previously did something along 
these lines: 

if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)) { 

if (folio && folio != pmd_folio(*pmd)) return;

 __split_huge_pmd_locked(...); 

} 

The bug stems from applying pmd_folio() to a PMD that may be a migration entry (i.e., not 
a normal PMD pointing to a folio). A migration entry uses a swap/migration-encoded 
PMD value, and pmd_folio() or other PMD->folio decoding paths can dereference data that 
is not a folio pointer — leading to an invalid kernel address dereference (page fault in 
kernel context).”

AI Agent Analysis



The Final Analysis From the AI Agent
● 5. Automated Solution Delivery

“1. Patch or upgrade:

  - Apply the upstream patch (commit be6e843f…) or upgrade to a kernel release that 
includes this fix (the commit message includes references to the fix and the syzkaller 
reproducer). [...]

2. Verify:

  - Re-run the workload or syzkaller job that triggered the BUG. The crash should not 
repeat once the check is in place.

3. If you cannot patch:

  - As a temporary mitigation, avoid triggering deferred huge page splits via the shrinker 
debugfs interface or do not enable the specific code paths that schedule deferred splits. 
This is only a stopgap and not recommended for production.”

AI Agent Analysis



Current Upstream AI Trend



Current Upstream AI Status
● Sasha Levin

○ AI for Kernel Engineers - Sasha Levin, NVIDIA

○ [ANNOUNCE] AUTOSEL: Modern AI-powered Linux Kernel Stable Backport Classifier

● Chris Mason

○ https://github.com/facebookexperimental/semcode

https://ossna2025.sched.com/event/1zffD/ai-for-kernel-engineers-sasha-levin-nvidia
https://www.mail-archive.com/workflows@vger.kernel.org/msg00054.html
https://github.com/facebookexperimental/semcode


Future Directions



Future Directions
● Develop specialized agents for different kernel subsystems

○ Each subsystem requires tailored prompts for accurate analysis.

○ For complex issues like deadlocks, multiple specialized agents could analyze individual callstacks, 

while a primary agent synthesizes their findings to identify the root cause.

● Integrate the agentic framework with Kernel CI systems like Syzkaller and the 0-day test robot

○ This proactive integration allows for automated bug detection and analysis at the source, 

significantly enhancing system reliability.

● Enable real-time integration with performance analysis tools

○ This would allow the agent to analyze performance metrics and traces as they occur, providing the 

ability to prevent critical system failures in a timely manner.



Thanks! Q&A?



The Reformat Prompt
You are an assistant who is helping transfer the input message from users line by line 
to detect the calltrace, if it's not a calltrace, just print it. If it's a part of calltrace, please 
reformat the calltrace for the sequential LLMs to address the root cause of kernel 
errors by following the examples:

Warning: this is just an example, you need to convert the symbol based on what you 
read.

From:
 __schedule+0x1755/0x4f50
 schedule+0x158/0x330
 schedule_preempt_disabled+0x15/0x30
 __mutex_lock+0x75f/0xeb0
 hugetlb_wp+0xf88/0x3440
 hugetlb_fault+0x14c8/0x2c30
 trace_clock_x86_tsc+0x20/0x20
 do_user_addr_fault+0x61d/0x1490
 exc_page_fault+0x64/0x100
 asm_exc_page_fault+0x26/0x30
RIP: 0010:__put_user_4+0xd/0x20
 copy_process+0x1f4a/0x3d60
 kernel_clone+0x210/0x8f0
 __x64_sys_clone+0x18d/0x1f0
 do_syscall_64+0x6a/0x120
 entry_SYSCALL_64_after_hwframe+0x76/0x7e

To:
[1234.123][ T1] __schedule+0x1755/0x4f50
[1234.123][ T1] schedule+0x158/0x330
[1234.123][ T1] schedule_preempt_disabled+0x15/0x30
[1234.123][ T1] __mutex_lock+0x75f/0xeb0
[1234.123][ T1] hugetlb_wp+0xf88/0x3440
[1234.123][ T1] hugetlb_fault+0x14c8/0x2c30
[1234.123][ T1] trace_clock_x86_tsc+0x20/0x20
[1234.123][ T1] do_user_addr_fault+0x61d/0x1490
[1234.123][ T1] exc_page_fault+0x64/0x100
[1234.123][ T1] asm_exc_page_fault+0x26/0x30
RIP: 0010:__put_user_4+0xd/0x20
[1234.123][ T1] copy_process+0x1f4a/0x3d60
[1234.123][ T1] kernel_clone+0x210/0x8f0
[1234.123][ T1] __x64_sys_clone+0x18d/0x1f0
[1234.123][ T1] do_syscall_64+0x6a/0x120
[1234.123][ T1] entry_SYSCALL_64_after_hwframe+0x76/0x7e

Please bear in mind that your job is to reformat the calltrace in the text and don't answer any questions. Also, please keep other text from 
users unmodified and intact. Thanks!

Here is the input from user: {{ $json.chatInput }}



The General Kernel Calltrace Analyzer Prompt
# Your role
You are a seasoned Linux kernel panic debugger. Your mission is to help the user analyze the callstack messages and figure out 
the what's the context of callstack execution.

# Debugging Steps
## Extract the callstacks from the error message
You will be given a calltrace from the user. At first, when you receive the error message. Please identify how many kernel error 
calltraces are in the message. 

Then, you would like to extract the calltraces and send them to the MCP tool one by one. The function of the callstack MCP tool 
is to extract the related source code of the function symbols for you to proceed to analyze and figure out what's running in the 
calltrace.

## Analyze the calltrace
When you receive the calltrace and the corresponding source code, you would like to read the source code and provide your 
insight. When you have several source code with the calltraces, please read the specific calltrace calling flow carefully. 
Eventually, you need to provide the analysis result based on combining different calltraces.

## Find the possible fix commits in the vector database tool
We have an attached vector storage tool including all the possible git commits fix in the linux kernel git tree. After analyzing 
the calltrace, you should have a good understanding of the problem. Then, please ask a good question to the vector database 
tool. The tool will come back with the most-related commits with the similarity search. With the commits, please summarzie the 
plausible fix commit with your previous analysis for user's reference.

This is calltrace log from user for you to analyze:
{{ $json.choices[0].message.content }}


